RicardoRei commited on
Commit
44e6fb6
·
1 Parent(s): 0f56920

multilingual fine-edu classifier

Browse files
Files changed (2) hide show
  1. README.md +115 -14
  2. train.py +76 -0
README.md CHANGED
@@ -1,9 +1,25 @@
 
 
 
 
1
 
 
 
 
 
 
 
 
 
 
 
2
 
3
  ```python
 
4
  import torch
5
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
6
- from datasets import Dataset
 
7
 
8
  device = "cuda"
9
  path = "Unbabel/mfineweb-edu-classifier"
@@ -15,19 +31,104 @@ model = AutoModelForSequenceClassification.from_pretrained(
15
  )
16
  tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
17
 
18
- def tokenize(examples):
19
- return tokenizer(examples["text"], truncation=True, max_length=512)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
20
 
21
- texts = [
22
- "This is a text",
23
- "this is another text to classify"
24
- ]
25
 
26
- model_inputs = [
27
- tokenizer(text, truncation=True, max_length=512) for text in texts
28
- ]
29
 
30
- with torch.no_grad():
31
- for model_input in model_inputs:
32
- output = model(input_ids)
33
- ```
 
1
+ language:
2
+ - multilingual
3
+ license: apache-2.0
4
+ ---
5
 
6
+ ## Running Model:
7
+ To run inference you must install
8
+ ```
9
+ pip install transformers[torch]
10
+ pip install datasets
11
+ pip install pandas
12
+ pip install tqdm
13
+ ```
14
+
15
+ After installing those libraries you can sun the following code:
16
 
17
  ```python
18
+ import pandas as pd
19
  import torch
20
  from transformers import AutoModelForSequenceClassification, AutoTokenizer
21
+ from tqdm import tqdm
22
+
23
 
24
  device = "cuda"
25
  path = "Unbabel/mfineweb-edu-classifier"
 
31
  )
32
  tokenizer = AutoTokenizer.from_pretrained(path, use_fast=True)
33
 
34
+ def get_model_outputs(texts):
35
+ inputs = tokenizer(texts, padding=True, truncation=True, return_tensors="pt", max_length=512).to(model.device)
36
+ with torch.no_grad():
37
+ outputs = model(**inputs)
38
+ score = outputs.logits
39
+ prob = torch.nn.functional.sigmoid(outputs.binary_logits)
40
+ return score.cpu(), prob.cpu()
41
+
42
+ def batchify_texts(texts, batch_size):
43
+ for i in range(0, len(texts), batch_size):
44
+ yield texts[i:i + batch_size]
45
+
46
+ # TODO: replace the next line with the texts you want to classify
47
+ texts = LIST_WITH_TEXTS_TO_CLASSIFY
48
+ batch_size = 64 # Adjust based on your available memory and model capacity
49
+ num_batches = (len(texts) + batch_size - 1) // batch_size
50
+
51
+ all_scores = []
52
+ all_probs = []
53
+ with tqdm(total=num_batches, dynamic_ncols=True) as pbar:
54
+ for batch_num, batch in enumerate(batchify_texts(texts, batch_size), 1):
55
+ score, probs = get_model_outputs(batch)
56
+ all_scores.append(score)
57
+ all_probs.append(probs)
58
+ pbar.set_description(f"Processing Batch {batch_num}/{num_batches}")
59
+ pbar.update(1)
60
+
61
+ # SCORES is the output of the regression head and should reflect the
62
+ # educational score of the text!
63
+ scores = torch.cat(all_scores, dim=0).squeeze()
64
+
65
+ ## BINARY_PRED is the output of the classification head that tells
66
+ # if a text has an acceptable educational score or not.
67
+ # NOTE: Converting the scores into binary predictions is also possible
68
+ all_probs = torch.cat(all_probs, dim=0).squeeze()
69
+ binary_pred = (all_probs >= 0.5).numpy().astype(int)
70
+ ```
71
+
72
+ ## English Results:
73
+
74
+ When testing the model on an english partition with 37537 samples the results are comparable to the original FineEdu-classifier.
75
+
76
+ Regression head results:
77
+ ```
78
+ precision recall f1-score support
79
+
80
+ 0 0.80 0.53 0.64 5130
81
+ 1 0.80 0.88 0.83 21602
82
+ 2 0.63 0.58 0.61 7849
83
+ 3 0.54 0.62 0.58 2310
84
+ 4 0.62 0.48 0.54 645
85
+ 5 0.00 0.00 0.00 1
86
+
87
+ accuracy 0.74 37537
88
+ macro avg 0.56 0.51 0.53 37537
89
+ weighted avg 0.74 0.74 0.74 37537
90
+ ```
91
+
92
+ Binary head results:
93
+ ```
94
+ precision recall f1-score support
95
+
96
+ 0 0.98 0.97 0.98 34581
97
+ 1 0.71 0.74 0.73 2956
98
+
99
+ accuracy 0.96 37537
100
+ macro avg 0.85 0.86 0.85 37537
101
+ weighted avg 0.96 0.96 0.96 37537
102
+ ```
103
+
104
+ ## Multilingual Results:
105
+
106
+ If we evaluate on the same texts translated into 15 different languages are almost identical!
107
+
108
+ Regression head results:
109
+ ```
110
+ precision recall f1-score support
111
+
112
+ 0 0.80 0.50 0.61 5130
113
+ 1 0.79 0.87 0.83 21602
114
+ 2 0.61 0.58 0.59 7849
115
+ 3 0.52 0.61 0.56 2310
116
+ 4 0.61 0.38 0.47 645
117
+ 5 0.00 0.00 0.00 1
118
+
119
+ accuracy 0.73 37537
120
+ macro avg 0.55 0.49 0.51 37537
121
+ weighted avg 0.73 0.73 0.73 37537
122
+ ```
123
 
124
+ Binary head results:
125
+ ```
126
+ precision recall f1-score support
 
127
 
128
+ 0 0.98 0.97 0.97 34581
129
+ 1 0.70 0.71 0.71 2956
 
130
 
131
+ accuracy 0.95 37537
132
+ macro avg 0.84 0.84 0.84 37537
133
+ weighted avg 0.95 0.95 0.95 37537
134
+ ```
train.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pandas as pd
3
+ from classifier import DebertaV2ForSequenceClassification
4
+ from datasets import Dataset
5
+ from scipy.stats import pearsonr
6
+ from sklearn.metrics import accuracy_score, precision_score, recall_score
7
+ from transformers import (AutoTokenizer, DataCollatorWithPadding, Trainer,
8
+ TrainingArguments)
9
+
10
+ tokenizer = AutoTokenizer.from_pretrained("microsoft/mdeberta-v3-base")
11
+
12
+ def sigmoid(x):
13
+ return 1 / (1 + np.exp(-x))
14
+
15
+ def compute_metrics(eval_pred):
16
+ predictions, labels = eval_pred
17
+ scores, binary_logits = predictions
18
+ scores = scores.squeeze()
19
+ probs = sigmoid(binary_logits.squeeze())
20
+ predicted_labels = (probs >= 0.5).astype(int)
21
+ binary_labels = (labels >= 3).astype(int)
22
+ return {
23
+ 'pearson': pearsonr(scores, labels)[0],
24
+ 'accuracy': accuracy_score(binary_labels, predicted_labels),
25
+ 'precision': precision_score(binary_labels, predicted_labels),
26
+ 'recall': recall_score(binary_labels, predicted_labels),
27
+ }
28
+
29
+ def tokenize_function(examples):
30
+ return tokenizer(examples["text"], truncation=True, max_length=512)
31
+
32
+ def train_classifier():
33
+ train_csv = pd.read_csv(PATH_TO_TRAINSET)
34
+ train_dataset = Dataset.from_pandas(train_csv)
35
+
36
+ test_csv = pd.read_csv(PATH_TO_TESTSET).sample(n=10_000, random_state=42)
37
+ test_dataset = Dataset.from_pandas(test_csv)
38
+
39
+ train_dataset = train_dataset.map(tokenize_function, batched=True)
40
+ test_dataset = test_dataset.map(tokenize_function, batched=True)
41
+ train_dataset = train_dataset.with_format("torch")
42
+ test_dataset = test_dataset.with_format("torch")
43
+
44
+ data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
45
+
46
+ training_args = TrainingArguments(
47
+ output_dir="./results",
48
+ evaluation_strategy="epoch",
49
+ save_strategy="epoch",
50
+ learning_rate=2e-5,
51
+ per_device_train_batch_size=16,
52
+ per_device_eval_batch_size=16,
53
+ num_train_epochs=3,
54
+ weight_decay=0.01,
55
+ logging_dir="./logs",
56
+ logging_steps=10,
57
+ )
58
+ model = DebertaV2ForSequenceClassification.from_pretrained("microsoft/mdeberta-v3-base")
59
+ print ("Freezing model embeddings!")
60
+ model.freeze_embeddings()
61
+ trainer = Trainer(
62
+ model=model,
63
+ args=training_args,
64
+ train_dataset=train_dataset,
65
+ eval_dataset=test_dataset,
66
+ tokenizer=tokenizer,
67
+ data_collator=data_collator,
68
+ compute_metrics=compute_metrics
69
+ )
70
+ trainer.train()
71
+ # Evaluate the model
72
+ trainer.evaluate()
73
+ #trainer.push_to_hub(private=True, model_name="mFine-Edu-classifier")
74
+
75
+ if __name__ == "__main__":
76
+ train_classifier()