--- language: en library_name: transformers license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct pipeline_tag: text-generation tags: - llama-3.1 - instruction-tuned datasets: - OpenAssistant/oasst1 - databricks/databricks-dolly-15k - Open-Orca/OpenOrca - mlabonne/open-perfectblend - tatsu-lab/alpaca model-index: - name: utkmst/chimera-beta-test2-lora-merged results: - task: type: text-generation dataset: type: leaderboard name: Overall Leaderboard metrics: - name: acc_norm type: acc_norm value: 0.4440 verified: true - name: acc type: acc value: 0.2992 verified: true - name: exact_match type: exact_match value: 0.0951 verified: true - task: type: text-generation dataset: type: bbh name: BBH (Big Bench Hard) metrics: - name: acc_norm type: acc_norm value: 0.4773 verified: true - task: type: text-generation dataset: type: gpqa name: GPQA (Google-Patched Question Answering) metrics: - name: acc_norm type: acc_norm value: 0.3036 verified: true - task: type: text-generation dataset: type: math name: Math metrics: - name: exact_match type: exact_match value: 0.0951 verified: true - task: type: text-generation dataset: type: mmlu_pro name: MMLU-Pro metrics: - name: acc type: acc value: 0.2992 verified: true - task: type: text-generation dataset: type: musr name: MUSR (Multi-Step Reasoning) metrics: - name: acc_norm type: acc_norm value: 0.4113 verified: true --- # utkmst/chimera-beta-test2-lora-merged ## Model Description This model is a fine-tuned version of Meta's Llama-3.1-8B-Instruct model, created through LoRA fine-tuning on multiple instruction datasets, followed by merging the adapter weights with the base model. ## Architecture - **Base Model**: meta-llama/Llama-3.1-8B-Instruct - **Size**: 8.03B parameters - **Type**: Decoder-only transformer - **Format**: SafeTensors (full precision) ## Training Details - **Training Method**: LoRA fine-tuning followed by adapter merging - **LoRA Configuration**: - Rank: 8 - Alpha: 16 - Trainable modules: Attention layers and feed-forward networks - **Training Hyperparameters**: - Learning rate: 2e-4 - Batch size: 2 - Training epochs: 1 - Optimizer: AdamW with constant scheduler ## Intended Use This model is designed for: - General purpose assistant capabilities - Question answering and knowledge retrieval - Creative content generation - Instructional guidance ## Limitations - Base model limitations including potential hallucinations and factual inaccuracies - Limited context window compared to larger models - Knowledge cutoff from the base Llama-3.1 model - May exhibit biases present in training data - Performance on specialized tasks may vary ## Usage with Transformers ```python from transformers import AutoModelForCausalLM, AutoTokenizer model = AutoModelForCausalLM.from_pretrained("utkmst/chimera-beta-test2-lora-merged") tokenizer = AutoTokenizer.from_pretrained("utkmst/chimera-beta-test2-lora-merged") ``` ## License This model inherits the license from Meta's Llama 3.1.