utkmst commited on
Commit
217e4bc
·
verified ·
1 Parent(s): b87c5d5

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -0
README.md ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model:
3
+ - meta-llama/Llama-3.1-8B-Instruct
4
+ language:
5
+ - en
6
+ tags:
7
+ - llama-3.1
8
+ - instruction-tuned
9
+ - fine-tuned
10
+ - merged-lora
11
+ license: llama3.1
12
+ datasets:
13
+ - OpenAssistant/oasst1
14
+ - databricks/databricks-dolly-15k
15
+ - Open-Orca/OpenOrca
16
+ - mlabonne/open-perfectblend
17
+ - tatsu-lab/alpaca
18
+ model-index:
19
+ - name: utkmst/chimera-beta-test2-lora-merged
20
+ results:
21
+ - task:
22
+ type: text-generation
23
+ name: Text Generation
24
+ metrics:
25
+ - name: Training Loss
26
+ type: loss
27
+ value: 2.143046485595703
28
+ ---
29
+
30
+ # utkmst/chimera-beta-test2-lora-merged
31
+
32
+ ## Model Description
33
+ This model (`utkmst/chimera-beta-test2-lora-merged`) is a fine-tuned version of Meta's Llama-3.1-8B-Instruct model. It was created through LoRA fine-tuning on a mixture of high-quality instruction datasets, followed by merging the adapter weights with the base model, producing a fully-merged model in SafeTensors format.
34
+
35
+ ## Architecture
36
+ - **Base Model**: meta-llama/Llama-3.1-8B-Instruct
37
+ - **Size**: 8.03B parameters
38
+ - **Type**: Decoder-only transformer
39
+ - **Format**: SafeTensors (full precision)
40
+
41
+ ## Training Details
42
+ - **Training Method**: LoRA fine-tuning followed by adapter merging
43
+ - **LoRA Configuration**:
44
+ - Rank: 8
45
+ - Alpha: 16
46
+ - Trainable modules: Attention layers and feed-forward networks
47
+ - **Training Hyperparameters**:
48
+ - Learning rate: 2e-4
49
+ - Batch size: 2
50
+ - Training epochs: 1
51
+ - Optimizer: AdamW with constant scheduler
52
+
53
+ ## Dataset
54
+ The model was trained on a curated mixture of high-quality instruction datasets:
55
+ - OpenAssistant/oasst1: Human-generated conversations with AI assistants
56
+ - databricks/databricks-dolly-15k: Instruction-following examples
57
+ - Open-Orca/OpenOrca: Augmented training data based on GPT-4 generations
58
+ - mlabonne/open-perfectblend: A carefully balanced blend of open-source instruction data
59
+ - tatsu-lab/alpaca: Self-instructed data based on demonstrations
60
+
61
+ ## Intended Use
62
+ This model is designed for:
63
+ - General purpose assistant capabilities
64
+ - Question answering and knowledge retrieval
65
+ - Creative content generation
66
+ - Instructional guidance
67
+
68
+ ## Limitations
69
+ - Base model limitations including potential hallucinations and factual inaccuracies
70
+ - Limited context window compared to larger models
71
+ - Knowledge cutoff from the base Llama-3.1 model
72
+ - May exhibit biases present in training data
73
+ - Performance on specialized tasks may vary
74
+
75
+ ## Usage with Transformers
76
+
77
+ ```python
78
+ from transformers import AutoModelForCausalLM, AutoTokenizer
79
+
80
+ # Load model
81
+ model = AutoModelForCausalLM.from_pretrained("utkmst/chimera-beta-test2-lora-merged")
82
+ tokenizer = AutoTokenizer.from_pretrained("utkmst/chimera-beta-test2-lora-merged")
83
+
84
+ # Format prompt according to Llama 3.1 chat template
85
+ messages = [
86
+ {"role": "user", "content": "Tell me about the solar system."}
87
+ ]
88
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False)
89
+
90
+ # Generate response
91
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
92
+ outputs = model.generate(
93
+ inputs["input_ids"],
94
+ max_new_tokens=512,
95
+ temperature=0.7,
96
+ top_p=0.9,
97
+ )
98
+ response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
99
+ print(response)
100
+ ```
101
+
102
+ ## Quantized Version
103
+
104
+ A quantized GGUF version of this model is also available at utkmst/chimera-beta-test2-lora-merged-Q4_K_M-GGUF for deployment in resource-constrained environments.
105
+
106
+ ## License
107
+
108
+ This model inherits the license from Meta's Llama 3.1. Users must comply with the Llama 3 license terms and conditions.