--- library_name: transformers license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - automatic-speech-recognition - original_kakeiken_W_meeting_room - generated_from_trainer metrics: - wer model-index: - name: Hubert-kakeiken-W-meeting_room results: [] --- # Hubert-kakeiken-W-meeting_room This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the ORIGINAL_KAKEIKEN_W_MEETING_ROOM - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.0146 - Wer: 0.9990 - Cer: 1.0147 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 29.232 | 1.0 | 820 | 11.3507 | 1.0 | 1.1284 | | 9.4623 | 2.0 | 1640 | 7.8286 | 1.0 | 1.1284 | | 7.1817 | 3.0 | 2460 | 4.2914 | 1.0 | 1.1284 | | 3.6746 | 4.0 | 3280 | 2.9959 | 1.0 | 1.1284 | | 2.6344 | 5.0 | 4100 | 2.3796 | 1.0 | 1.1284 | | 2.224 | 6.0 | 4920 | 1.1763 | 1.0 | 1.0736 | | 0.8482 | 7.0 | 5740 | 0.4680 | 0.9999 | 0.9927 | | 0.4357 | 8.0 | 6560 | 0.2710 | 0.9993 | 0.9734 | | 0.3568 | 9.0 | 7380 | 0.1256 | 0.9996 | 1.0188 | | 0.2374 | 10.0 | 8200 | 0.1476 | 0.9990 | 1.0219 | | 0.1941 | 11.0 | 9020 | 0.0597 | 0.9990 | 1.0187 | | 0.1829 | 12.0 | 9840 | 0.0470 | 0.9990 | 1.0188 | | 0.1701 | 13.0 | 10660 | 0.0510 | 0.9990 | 1.0181 | | 0.1603 | 14.0 | 11480 | 0.0375 | 0.9988 | 1.0193 | | 0.1564 | 15.0 | 12300 | 0.0865 | 0.9991 | 1.0064 | | 0.1555 | 16.0 | 13120 | 0.0240 | 0.9990 | 1.0172 | | 0.1446 | 17.0 | 13940 | 0.0388 | 0.9990 | 1.0184 | | 0.1374 | 18.0 | 14760 | 0.0724 | 0.9991 | 1.0229 | | 0.1358 | 19.0 | 15580 | 0.0293 | 0.9988 | 1.0168 | | 0.126 | 20.0 | 16400 | 0.0250 | 0.9990 | 1.0173 | | 0.1238 | 21.0 | 17220 | 0.0337 | 0.9991 | 1.0174 | | 0.1106 | 22.0 | 18040 | 0.0181 | 0.9988 | 1.0159 | | 0.1124 | 23.0 | 18860 | 0.0199 | 0.9990 | 1.0165 | | 0.104 | 24.0 | 19680 | 0.0151 | 0.9990 | 1.0151 | | 0.1039 | 25.0 | 20500 | 0.0136 | 0.9990 | 1.0149 | | 0.094 | 26.0 | 21320 | 0.0132 | 0.9988 | 1.0148 | | 0.0921 | 27.0 | 22140 | 0.0171 | 0.9990 | 1.0158 | | 0.0832 | 28.0 | 22960 | 0.0122 | 0.9990 | 1.0146 | | 0.08 | 29.0 | 23780 | 0.0147 | 0.9988 | 1.0151 | | 0.0797 | 30.0 | 24600 | 0.0122 | 0.9990 | 1.0147 | | 0.0775 | 31.0 | 25420 | 0.0131 | 0.9990 | 1.0151 | | 0.0675 | 32.0 | 26240 | 0.0131 | 0.9991 | 1.0148 | | 0.0676 | 33.0 | 27060 | 0.0171 | 0.9988 | 1.0146 | | 0.069 | 34.0 | 27880 | 0.0147 | 0.9991 | 1.0146 | | 0.0588 | 35.0 | 28700 | 0.0140 | 0.9990 | 1.0146 | | 0.0608 | 36.0 | 29520 | 0.0152 | 0.9988 | 1.0146 | | 0.0598 | 37.0 | 30340 | 0.0158 | 0.9990 | 1.0146 | | 0.0578 | 38.0 | 31160 | 0.0150 | 0.9990 | 1.0147 | | 0.0563 | 39.0 | 31980 | 0.0154 | 0.9990 | 1.0147 | | 0.0591 | 39.9518 | 32760 | 0.0146 | 0.9990 | 1.0147 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0