--- library_name: transformers license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - automatic-speech-recognition - original_kakeiken_W_lounge - generated_from_trainer metrics: - wer model-index: - name: Hubert-kakeiken-W-lounge results: [] --- # Hubert-kakeiken-W-lounge This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the ORIGINAL_KAKEIKEN_W_LOUNGE - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.0115 - Wer: 0.9988 - Cer: 1.0143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 40.3051 | 1.0 | 820 | 14.9753 | 1.0 | 1.1284 | | 12.3062 | 2.0 | 1640 | 9.9534 | 1.0 | 1.1284 | | 9.0113 | 3.0 | 2460 | 4.8377 | 1.0 | 1.1284 | | 3.9478 | 4.0 | 3280 | 3.2016 | 1.0 | 1.1284 | | 2.7396 | 5.0 | 4100 | 2.4831 | 1.0 | 1.1284 | | 2.2509 | 6.0 | 4920 | 0.9198 | 0.9999 | 1.1054 | | 0.6886 | 7.0 | 5740 | 0.3222 | 0.9991 | 1.0273 | | 0.318 | 8.0 | 6560 | 0.1601 | 0.9991 | 1.0191 | | 0.255 | 9.0 | 7380 | 0.0902 | 0.9988 | 1.0176 | | 0.1835 | 10.0 | 8200 | 0.0716 | 0.9991 | 1.0197 | | 0.16 | 11.0 | 9020 | 0.0492 | 0.9988 | 1.0175 | | 0.1444 | 12.0 | 9840 | 0.0344 | 0.9990 | 1.0162 | | 0.1307 | 13.0 | 10660 | 0.0388 | 0.9988 | 1.0176 | | 0.1346 | 14.0 | 11480 | 0.0277 | 0.9990 | 1.0167 | | 0.1257 | 15.0 | 12300 | 0.0267 | 0.9988 | 1.0164 | | 0.1157 | 16.0 | 13120 | 0.0276 | 0.9990 | 1.0166 | | 0.1104 | 17.0 | 13940 | 0.0341 | 0.9988 | 1.0172 | | 0.1086 | 18.0 | 14760 | 0.0236 | 0.9988 | 1.0167 | | 0.1072 | 19.0 | 15580 | 0.0306 | 0.9988 | 1.0175 | | 0.128 | 20.0 | 16400 | 0.0241 | 0.9988 | 1.0160 | | 0.0987 | 21.0 | 17220 | 0.0242 | 0.9988 | 1.0165 | | 0.1031 | 22.0 | 18040 | 0.0229 | 0.9990 | 1.0159 | | 0.0903 | 23.0 | 18860 | 0.0261 | 0.9988 | 1.0162 | | 0.0895 | 24.0 | 19680 | 0.0322 | 0.9988 | 1.0177 | | 0.0835 | 25.0 | 20500 | 0.0188 | 0.9988 | 1.0152 | | 0.0744 | 26.0 | 21320 | 0.0179 | 0.9988 | 1.0149 | | 0.0728 | 27.0 | 22140 | 0.0107 | 0.9988 | 1.0145 | | 0.0704 | 28.0 | 22960 | 0.0161 | 0.9988 | 1.0149 | | 0.068 | 29.0 | 23780 | 0.0140 | 0.9988 | 1.0150 | | 0.0635 | 30.0 | 24600 | 0.0179 | 0.9988 | 1.0148 | | 0.0606 | 31.0 | 25420 | 0.0170 | 0.9988 | 1.0146 | | 0.0549 | 32.0 | 26240 | 0.0127 | 0.9988 | 1.0146 | | 0.0557 | 33.0 | 27060 | 0.0112 | 0.9988 | 1.0146 | | 0.0525 | 34.0 | 27880 | 0.0140 | 0.9988 | 1.0146 | | 0.0478 | 35.0 | 28700 | 0.0125 | 0.9988 | 1.0146 | | 0.0475 | 36.0 | 29520 | 0.0124 | 0.9988 | 1.0146 | | 0.0455 | 37.0 | 30340 | 0.0114 | 0.9988 | 1.0142 | | 0.0444 | 38.0 | 31160 | 0.0118 | 0.9988 | 1.0142 | | 0.0476 | 39.0 | 31980 | 0.0119 | 0.9988 | 1.0142 | | 0.0464 | 39.9518 | 32760 | 0.0115 | 0.9988 | 1.0143 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0