--- library_name: transformers license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - automatic-speech-recognition - original_kakeiken_W_closed_add - generated_from_trainer metrics: - wer model-index: - name: Hubert-kakeiken-W-closed_add results: [] --- # Hubert-kakeiken-W-closed_add This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the ORIGINAL_KAKEIKEN_W_CLOSED_ADD - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.0298 - Wer: 0.9988 - Cer: 1.0164 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500 - num_epochs: 40.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 11.3302 | 1.0 | 1060 | 10.0279 | 1.0 | 1.1284 | | 7.0068 | 2.0 | 2120 | 5.3823 | 1.0 | 1.1283 | | 3.682 | 3.0 | 3180 | 3.1894 | 1.0 | 1.1283 | | 2.725 | 4.0 | 4240 | 2.1613 | 1.0 | 1.1284 | | 1.4317 | 5.0 | 5300 | 0.7817 | 1.0 | 1.1232 | | 0.5734 | 6.0 | 6360 | 0.2729 | 0.9991 | 1.0338 | | 0.3485 | 7.0 | 7420 | 0.1662 | 0.9988 | 1.0259 | | 0.2631 | 8.0 | 8480 | 0.0833 | 0.9988 | 1.0224 | | 0.2068 | 9.0 | 9540 | 0.0616 | 0.9990 | 1.0210 | | 0.1846 | 10.0 | 10600 | 0.0786 | 0.9988 | 1.0199 | | 0.1792 | 11.0 | 11660 | 0.0472 | 0.9990 | 1.0198 | | 0.1669 | 12.0 | 12720 | 0.0515 | 0.9988 | 1.0207 | | 0.1609 | 13.0 | 13780 | 0.0529 | 0.9988 | 1.0219 | | 0.1508 | 14.0 | 14840 | 0.0432 | 0.9988 | 1.0183 | | 0.1427 | 15.0 | 15900 | 0.0860 | 0.9988 | 1.0148 | | 0.1316 | 16.0 | 16960 | 0.0350 | 0.9988 | 1.0185 | | 0.1296 | 17.0 | 18020 | 0.0449 | 0.9988 | 1.0191 | | 0.1236 | 18.0 | 19080 | 0.0450 | 0.9988 | 1.0170 | | 0.1149 | 19.0 | 20140 | 0.0358 | 0.9990 | 1.0181 | | 0.1149 | 20.0 | 21200 | 0.0317 | 0.9990 | 1.0176 | | 0.106 | 21.0 | 22260 | 0.0369 | 0.9988 | 1.0170 | | 0.102 | 22.0 | 23320 | 0.0342 | 0.9988 | 1.0180 | | 0.1011 | 23.0 | 24380 | 0.0411 | 0.9988 | 1.0179 | | 0.0948 | 24.0 | 25440 | 0.0314 | 0.9988 | 1.0163 | | 0.0934 | 25.0 | 26500 | 0.0302 | 0.9988 | 1.0175 | | 0.0843 | 26.0 | 27560 | 0.0440 | 0.9988 | 1.0172 | | 0.0833 | 27.0 | 28620 | 0.0341 | 0.9988 | 1.0167 | | 0.0781 | 28.0 | 29680 | 0.0565 | 0.9988 | 1.0157 | | 0.0741 | 29.0 | 30740 | 0.0357 | 0.9988 | 1.0161 | | 0.0704 | 30.0 | 31800 | 0.0306 | 0.9988 | 1.0162 | | 0.0678 | 31.0 | 32860 | 0.0289 | 0.9988 | 1.0159 | | 0.067 | 32.0 | 33920 | 0.0279 | 0.9988 | 1.0159 | | 0.0641 | 33.0 | 34980 | 0.0325 | 0.9988 | 1.0160 | | 0.0595 | 34.0 | 36040 | 0.0330 | 0.9988 | 1.0166 | | 0.055 | 35.0 | 37100 | 0.0309 | 0.9988 | 1.0164 | | 0.055 | 36.0 | 38160 | 0.0303 | 0.9988 | 1.0167 | | 0.0555 | 37.0 | 39220 | 0.0311 | 0.9988 | 1.0166 | | 0.0533 | 38.0 | 40280 | 0.0311 | 0.9988 | 1.0166 | | 0.0528 | 39.0 | 41340 | 0.0310 | 0.9988 | 1.0166 | | 0.0509 | 39.9627 | 42360 | 0.0310 | 0.9988 | 1.0166 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0