--- library_name: transformers language: - ja license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - automatic-speech-recognition - mozilla-foundation/common_voice_13_0 - generated_from_trainer metrics: - wer model-index: - name: Hubert-common_voice_JSUT-ja-demo-kana results: [] --- # Hubert-common_voice_JSUT-ja-demo-kana This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - JA dataset. It achieves the following results on the evaluation set: - Loss: 0.5729 - Wer: 0.9998 - Cer: 0.3126 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 12500 - num_epochs: 20.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | No log | 0.1936 | 100 | 41.9560 | 1.5294 | 6.1696 | | No log | 0.3872 | 200 | 41.4657 | 1.4235 | 5.9722 | | No log | 0.5808 | 300 | 40.2769 | 1.1848 | 3.7327 | | No log | 0.7744 | 400 | 36.3010 | 1.0 | 0.9963 | | 31.4419 | 0.9681 | 500 | 24.5426 | 1.0 | 0.9991 | | 31.4419 | 1.1607 | 600 | 18.8642 | 1.0 | 0.9991 | | 31.4419 | 1.3543 | 700 | 17.6651 | 1.0 | 0.9991 | | 31.4419 | 1.5479 | 800 | 17.2007 | 1.0 | 0.9992 | | 31.4419 | 1.7415 | 900 | 16.7617 | 1.0 | 0.9991 | | 14.8315 | 1.9351 | 1000 | 16.2895 | 1.0 | 0.9991 | | 14.8315 | 2.1278 | 1100 | 15.7877 | 1.0 | 0.9991 | | 14.8315 | 2.3214 | 1200 | 15.2488 | 1.0 | 0.9991 | | 14.8315 | 2.5150 | 1300 | 14.6680 | 1.0 | 0.9991 | | 14.8315 | 2.7086 | 1400 | 14.0637 | 1.0 | 0.9991 | | 12.4363 | 2.9022 | 1500 | 13.4217 | 1.0 | 0.9991 | | 12.4363 | 3.0949 | 1600 | 12.7374 | 1.0 | 0.9991 | | 12.4363 | 3.2885 | 1700 | 12.0319 | 1.0 | 0.9991 | | 12.4363 | 3.4821 | 1800 | 11.2982 | 1.0 | 0.9991 | | 12.4363 | 3.6757 | 1900 | 10.5580 | 1.0 | 0.9992 | | 9.8267 | 3.8693 | 2000 | 9.8129 | 1.0 | 0.9991 | | 9.8267 | 4.0620 | 2100 | 9.0640 | 1.0 | 0.9991 | | 9.8267 | 4.2556 | 2200 | 8.3376 | 1.0 | 0.9992 | | 9.8267 | 4.4492 | 2300 | 7.6287 | 1.0 | 0.9991 | | 9.8267 | 4.6428 | 2400 | 6.9678 | 1.0 | 0.9991 | | 6.9778 | 4.8364 | 2500 | 6.3635 | 1.0 | 0.9992 | | 6.9778 | 5.0290 | 2600 | 5.8258 | 1.0 | 0.9991 | | 6.9778 | 5.2227 | 2700 | 5.3677 | 1.0 | 0.9991 | | 6.9778 | 5.4163 | 2800 | 4.9888 | 1.0 | 0.9991 | | 6.9778 | 5.6099 | 2900 | 4.6956 | 1.0 | 0.9991 | | 4.8731 | 5.8035 | 3000 | 4.4788 | 1.0 | 0.9991 | | 4.8731 | 5.9971 | 3100 | 4.3287 | 1.0 | 0.9991 | | 4.8731 | 6.1897 | 3200 | 4.2057 | 1.0 | 0.9991 | | 4.8731 | 6.3833 | 3300 | 4.1448 | 1.0 | 0.9991 | | 4.8731 | 6.5770 | 3400 | 4.1095 | 1.0 | 0.9991 | | 4.1216 | 6.7706 | 3500 | 4.0858 | 1.0 | 0.9991 | | 4.1216 | 6.9642 | 3600 | 4.0725 | 1.0 | 0.9991 | | 4.1216 | 7.1568 | 3700 | 4.0648 | 1.0 | 0.9991 | | 4.1216 | 7.3504 | 3800 | 4.0578 | 1.0 | 0.9991 | | 4.1216 | 7.5440 | 3900 | 4.0494 | 1.0 | 0.9991 | | 4.0264 | 7.7377 | 4000 | 4.0367 | 1.0 | 0.9991 | | 4.0264 | 7.9313 | 4100 | 4.0276 | 1.0 | 0.9991 | | 4.0264 | 8.1239 | 4200 | 4.0121 | 1.0 | 0.9991 | | 4.0264 | 8.3175 | 4300 | 3.9720 | 1.0 | 0.9991 | | 4.0264 | 8.5111 | 4400 | 3.9031 | 1.0 | 0.9991 | | 3.937 | 8.7047 | 4500 | 3.8091 | 1.0 | 0.9991 | | 3.937 | 8.8984 | 4600 | 3.6690 | 1.0 | 0.9991 | | 3.937 | 9.0910 | 4700 | 3.4759 | 1.0 | 0.9991 | | 3.937 | 9.2846 | 4800 | 3.2108 | 1.0 | 0.9987 | | 3.937 | 9.4782 | 4900 | 2.6813 | 1.0 | 0.6453 | | 3.1866 | 9.6718 | 5000 | 2.3876 | 1.0002 | 0.5372 | | 3.1866 | 9.8654 | 5100 | 2.1678 | 1.0 | 0.4902 | | 3.1866 | 10.0581 | 5200 | 1.9945 | 1.0002 | 0.4530 | | 3.1866 | 10.2517 | 5300 | 1.8576 | 1.0 | 0.4270 | | 3.1866 | 10.4453 | 5400 | 1.7788 | 1.0 | 0.4399 | | 1.9458 | 10.6389 | 5500 | 1.6520 | 1.0 | 0.4094 | | 1.9458 | 10.8325 | 5600 | 1.5545 | 1.0 | 0.3874 | | 1.9458 | 11.0252 | 5700 | 1.4698 | 1.0 | 0.3800 | | 1.9458 | 11.2188 | 5800 | 1.4052 | 1.0 | 0.3777 | | 1.9458 | 11.4124 | 5900 | 1.3276 | 1.0 | 0.3658 | | 1.4263 | 11.6060 | 6000 | 1.2710 | 1.0 | 0.3668 | | 1.4263 | 11.7996 | 6100 | 1.2150 | 1.0 | 0.3536 | | 1.4263 | 11.9932 | 6200 | 1.1586 | 1.0 | 0.3531 | | 1.4263 | 12.1859 | 6300 | 1.1156 | 1.0 | 0.3519 | | 1.4263 | 12.3795 | 6400 | 1.0729 | 1.0 | 0.3484 | | 1.1212 | 12.5731 | 6500 | 1.0345 | 1.0 | 0.3467 | | 1.1212 | 12.7667 | 6600 | 0.9887 | 1.0 | 0.3428 | | 1.1212 | 12.9603 | 6700 | 0.9630 | 1.0 | 0.3417 | | 1.1212 | 13.1530 | 6800 | 0.9260 | 1.0 | 0.3381 | | 1.1212 | 13.3466 | 6900 | 0.9005 | 1.0 | 0.3397 | | 0.9141 | 13.5402 | 7000 | 0.8764 | 1.0 | 0.3369 | | 0.9141 | 13.7338 | 7100 | 0.8512 | 1.0 | 0.3363 | | 0.9141 | 13.9274 | 7200 | 0.8273 | 1.0 | 0.3351 | | 0.9141 | 14.1200 | 7300 | 0.8083 | 1.0 | 0.3329 | | 0.9141 | 14.3136 | 7400 | 0.7851 | 0.9998 | 0.3300 | | 0.7811 | 14.5073 | 7500 | 0.7743 | 1.0 | 0.3312 | | 0.7811 | 14.7009 | 7600 | 0.7510 | 0.9998 | 0.3272 | | 0.7811 | 14.8945 | 7700 | 0.7366 | 1.0 | 0.3267 | | 0.7811 | 15.0871 | 7800 | 0.7290 | 1.0 | 0.3253 | | 0.7811 | 15.2807 | 7900 | 0.7132 | 1.0 | 0.3247 | | 0.6725 | 15.4743 | 8000 | 0.7190 | 1.0 | 0.3277 | | 0.6725 | 15.6680 | 8100 | 0.7006 | 1.0 | 0.3241 | | 0.6725 | 15.8616 | 8200 | 0.6835 | 1.0 | 0.3226 | | 0.6725 | 16.0542 | 8300 | 0.6698 | 0.9998 | 0.3209 | | 0.6725 | 16.2478 | 8400 | 0.6628 | 0.9998 | 0.3214 | | 0.606 | 16.4414 | 8500 | 0.6538 | 1.0 | 0.3205 | | 0.606 | 16.6350 | 8600 | 0.6523 | 1.0 | 0.3186 | | 0.606 | 16.8287 | 8700 | 0.6449 | 1.0 | 0.3183 | | 0.606 | 17.0213 | 8800 | 0.6401 | 1.0 | 0.3179 | | 0.606 | 17.2149 | 8900 | 0.6333 | 1.0 | 0.3200 | | 0.5492 | 17.4085 | 9000 | 0.6333 | 1.0 | 0.3201 | | 0.5492 | 17.6021 | 9100 | 0.6219 | 1.0 | 0.3179 | | 0.5492 | 17.7957 | 9200 | 0.6189 | 1.0 | 0.3201 | | 0.5492 | 17.9894 | 9300 | 0.6023 | 0.9998 | 0.3166 | | 0.5492 | 18.1820 | 9400 | 0.6084 | 1.0 | 0.3154 | | 0.5057 | 18.3756 | 9500 | 0.6002 | 0.9998 | 0.3147 | | 0.5057 | 18.5692 | 9600 | 0.5875 | 1.0 | 0.3128 | | 0.5057 | 18.7628 | 9700 | 0.5903 | 0.9998 | 0.3138 | | 0.5057 | 18.9564 | 9800 | 0.5930 | 1.0 | 0.3127 | | 0.5057 | 19.1491 | 9900 | 0.5855 | 1.0 | 0.3141 | | 0.4709 | 19.3427 | 10000 | 0.5880 | 1.0 | 0.3120 | | 0.4709 | 19.5363 | 10100 | 0.5855 | 1.0 | 0.3131 | | 0.4709 | 19.7299 | 10200 | 0.5734 | 1.0 | 0.3106 | | 0.4709 | 19.9235 | 10300 | 0.5777 | 1.0 | 0.3109 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3