--- language: - en license: apache-2.0 library_name: transformers tags: - unsloth - transformers - tinyllama --- # Finetune Mistral, Gemma, Llama 2-5x faster with 70% less memory via Unsloth! A reupload from https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T We have a Google Colab Tesla T4 notebook for TinyLlama with 4096 max sequence length RoPE Scaling here: https://colab.research.google.com/drive/1AZghoNBQaMDgWJpi4RbffGM1h6raLUj9?usp=sharing [](https://discord.gg/u54VK8m8tk) [](https://ko-fi.com/unsloth) [](https://github.com/unslothai/unsloth) ```python from unsloth import FastLanguageModel import torch from trl import SFTTrainer from transformers import TrainingArguments from datasets import load_dataset max_seq_length = 2048 # Supports RoPE Scaling interally, so choose any! # Get LAION dataset url = "https://huggingface.co/datasets/laion/OIG/resolve/main/unified_chip2.jsonl" dataset = load_dataset("json", data_files = {"train" : url}, split = "train") # 4bit pre quantized models we support - 4x faster downloading! fourbit_models = [ "unsloth/mistral-7b-bnb-4bit", "unsloth/llama-2-7b-bnb-4bit", "unsloth/llama-2-13b-bnb-4bit", "unsloth/codellama-34b-bnb-4bit", "unsloth/tinyllama-bnb-4bit", ] # Go to https://huggingface.co/unsloth for more 4-bit models! # Load Llama model model, tokenizer = FastLanguageModel.from_pretrained( model_name = "unsloth/mistral-7b-bnb-4bit", # Supports Llama, Mistral - replace this! max_seq_length = max_seq_length, dtype = None, load_in_4bit = True, ) # Do model patching and add fast LoRA weights model = FastLanguageModel.get_peft_model( model, r = 16, target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj",], lora_alpha = 16, lora_dropout = 0, # Supports any, but = 0 is optimized bias = "none", # Supports any, but = "none" is optimized use_gradient_checkpointing = True, random_state = 3407, max_seq_length = max_seq_length, use_rslora = False, # We support rank stabilized LoRA loftq_config = None, # And LoftQ ) trainer = SFTTrainer( model = model, train_dataset = dataset, dataset_text_field = "text", max_seq_length = max_seq_length, tokenizer = tokenizer, args = TrainingArguments( per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 10, max_steps = 60, fp16 = not torch.cuda.is_bf16_supported(), bf16 = torch.cuda.is_bf16_supported(), logging_steps = 1, output_dir = "outputs", optim = "adamw_8bit", seed = 3407, ), ) trainer.train() # Go to https://github.com/unslothai/unsloth/wiki for advanced tips like # (1) Saving to GGUF / merging to 16bit for vLLM # (2) Continued training from a saved LoRA adapter # (3) Adding an evaluation loop / OOMs # (4) Cutomized chat templates ```