Update README.md
Browse files
README.md
CHANGED
|
@@ -1,52 +1,53 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V3" />
|
| 7 |
-
</div>
|
| 8 |
-
<hr>
|
| 9 |
-
<div align="center" style="line-height: 1;">
|
| 10 |
-
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
|
| 11 |
-
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
|
| 12 |
-
</a>
|
| 13 |
-
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
|
| 14 |
-
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V3-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 15 |
-
</a>
|
| 16 |
-
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
|
| 17 |
-
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 18 |
-
</a>
|
| 19 |
-
</div>
|
| 20 |
|
| 21 |
-
<div align="center" style="line-height: 1;">
|
| 22 |
-
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
|
| 23 |
-
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
|
| 24 |
-
</a>
|
| 25 |
-
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
|
| 26 |
-
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 27 |
-
</a>
|
| 28 |
-
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
|
| 29 |
-
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
|
| 30 |
-
</a>
|
| 31 |
-
</div>
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
| 36 |
-
</a>
|
| 37 |
-
<a href="https://github.com/deepseek-ai/DeepSeek-V3/blob/main/LICENSE-MODEL" style="margin: 2px;">
|
| 38 |
-
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
|
| 39 |
-
</a>
|
| 40 |
-
</div>
|
| 41 |
|
|
|
|
|
|
|
| 42 |
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
|
|
|
|
| 47 |
|
| 48 |
-
|
|
|
|
|
|
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token.
|
| 51 |
To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2.
|
| 52 |
Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance.
|
|
@@ -55,9 +56,6 @@ Comprehensive evaluations reveal that DeepSeek-V3 outperforms other open-source
|
|
| 55 |
Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training.
|
| 56 |
In addition, its training process is remarkably stable.
|
| 57 |
Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
|
| 58 |
-
<p align="center">
|
| 59 |
-
<img width="80%" src="figures/benchmark.png">
|
| 60 |
-
</p>
|
| 61 |
|
| 62 |
## 2. Model Summary
|
| 63 |
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: deepseek-ai/DeepSeek-V3
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
library_name: transformers
|
| 6 |
+
license: mit
|
| 7 |
+
tags:
|
| 8 |
+
- deepseek_v3
|
| 9 |
+
- deepseek
|
| 10 |
+
- unsloth
|
| 11 |
+
- transformers
|
| 12 |
+
---
|
| 13 |
|
| 14 |
+
## ***See [our collection](https://huggingface.co/collections/unsloth/deepseek-v3-all-versions-677cf5cfd7df8b7815fc723c) for versions of Deepseek V3 including GGUF, bf16 and original formats.***
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
# Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
| 18 |
+
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
|
| 21 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
| 22 |
|
| 23 |
+
# unsloth/DeepSeek-V3-GGUF
|
| 24 |
+
For more details on the model, please go to Deepseek's original [model card](https://huggingface.co/deepseek-ai/DeepSeek-V3)
|
| 25 |
+
|
| 26 |
+
## ✨ Finetune for Free
|
| 27 |
+
|
| 28 |
+
All notebooks are **beginner friendly**! Add your dataset, click "Run All", and you'll get a 2x faster finetuned model which can be exported to GGUF, vLLM or uploaded to Hugging Face.
|
| 29 |
+
|
| 30 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
| 31 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
| 32 |
+
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
|
| 33 |
+
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
|
| 34 |
+
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
|
| 35 |
+
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
|
| 36 |
+
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
|
| 37 |
+
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
|
| 38 |
+
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
|
| 39 |
+
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
|
| 40 |
|
| 41 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
|
| 42 |
|
| 43 |
+
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
|
| 44 |
+
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
|
| 45 |
+
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
|
| 46 |
|
| 47 |
+
## Special Thanks
|
| 48 |
+
A huge thank you to the Deepseek team for creating and releasing these models.
|
| 49 |
+
|
| 50 |
+
## Model Information
|
| 51 |
We present DeepSeek-V3, a strong Mixture-of-Experts (MoE) language model with 671B total parameters with 37B activated for each token.
|
| 52 |
To achieve efficient inference and cost-effective training, DeepSeek-V3 adopts Multi-head Latent Attention (MLA) and DeepSeekMoE architectures, which were thoroughly validated in DeepSeek-V2.
|
| 53 |
Furthermore, DeepSeek-V3 pioneers an auxiliary-loss-free strategy for load balancing and sets a multi-token prediction training objective for stronger performance.
|
|
|
|
| 56 |
Despite its excellent performance, DeepSeek-V3 requires only 2.788M H800 GPU hours for its full training.
|
| 57 |
In addition, its training process is remarkably stable.
|
| 58 |
Throughout the entire training process, we did not experience any irrecoverable loss spikes or perform any rollbacks.
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
## 2. Model Summary
|
| 61 |
|