File size: 5,288 Bytes
19bbe1d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
from fastapi import FastAPI, HTTPException
# from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware

# from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel

# from pydantic import BaseModel

# from pydantic import BaseModel
import librosa

# import librosa
import torch
import base64

# import base64
import io
# import io
import logging
import numpy as np

# import numpy as np

# import numpy as np
from transformers import AutoModel, AutoTokenizer

# from transformers import AutoModel, AutoTokenizer

logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

class AudioRequest(BaseModel):
    audio_data: str
    sample_rate: int

class AudioResponse(BaseModel):
    audio_data: str
    text: str = ""

# Model initialization status
INITIALIZATION_STATUS = {
    "model_loaded": False,
    "error": None
}

# Global model and tokenizer instances
class Model:
    def __init__(self):
        self.model = model = AutoModel.from_pretrained(
            './models/checkpoint',
            trust_remote_code=True,
            torch_dtype=torch.bfloat16,
            attn_implementation='sdpa'
        )
        model = model.eval().cuda()
        
        self.tokenizer = AutoTokenizer.from_pretrained(
            './models/checkpoint',
            trust_remote_code=True
        )
        
        # Initialize TTS
        model.init_tts()
        model.tts.float()  # Convert TTS to float32 if needed
        
        self.model_in_sr = 16000
        self.model_out_sr = 24000
        self.ref_audio, _ = librosa.load('./ref_audios/female_example.wav', sr=self.model_in_sr, mono=True) # load the reference audio
        self.sys_prompt = model.get_sys_prompt(ref_audio=self.ref_audio, mode='audio_assistant', language='en') 

        # warmup
        audio_data = librosa.load('./ref_audios/male_example.wav', sr=self.model_in_sr, mono=True)[0]
        _ = self.inference(audio_data, self.model_in_sr)
    
    def inference(self, audio_np, input_audio_sr):
        if input_audio_sr != self.model_in_sr:
            audio_np = librosa.resample(audio_np, orig_sr=input_audio_sr, target_sr=self.model_in_sr)
        
        user_question = {'role': 'user', 'content': [audio_np]}

        # round one
        msgs = [self.sys_prompt, user_question]
        res = self.model.chat(
            msgs=msgs,
            tokenizer=self.tokenizer,
            sampling=True,
            max_new_tokens=128,
            use_tts_template=True,
            generate_audio=True,
            temperature=0.3,
        )
        audio = res["audio_wav"].cpu().numpy()

        if self.model_out_sr != input_audio_sr:
            audio = librosa.resample(audio, orig_sr=self.model_out_sr, target_sr=input_audio_sr)
        
        return audio, res["text"]

def initialize_model():
    """Initialize the MiniCPM model"""
    global model, INITIALIZATION_STATUS
    try:
        logger.info("Initializing model...")
        model = Model()

        INITIALIZATION_STATUS["model_loaded"] = True
        logger.info("MiniCPM model initialized successfully")
        return True
    except Exception as e:
        INITIALIZATION_STATUS["error"] = str(e)
        logger.error(f"Failed to initialize model: {e}")
        return False

@app.on_event("startup")
async def startup_event():
    """Initialize model on startup"""
    initialize_model()

@app.get("/api/v1/health")
def health_check():
    """Health check endpoint"""
    status = {
        "status": "healthy" if INITIALIZATION_STATUS["model_loaded"] else "initializing",
        "model_loaded": INITIALIZATION_STATUS["model_loaded"],
        "error": INITIALIZATION_STATUS["error"]
    }
    return status

@app.post("/api/v1/inference")
async def inference(request: AudioRequest) -> AudioResponse:
    """Run inference with MiniCPM model"""
    if not INITIALIZATION_STATUS["model_loaded"]:
        raise HTTPException(
            status_code=503,
            detail=f"Model not ready. Status: {INITIALIZATION_STATUS}"
        )

    try:
        # Decode audio data from base64
        audio_bytes = base64.b64decode(request.audio_data)
        audio_np = np.load(io.BytesIO(audio_bytes)).flatten()

        # Generate response
        import time
        start = time.time()
        print(f"starting inference with audio length {audio_np.shape}")
        audio_response, text_response = model.inference(audio_np, request.sample_rate)
        print(f"inference took {time.time() - start} seconds")

        # If we got audio, save it and encode to base64
        buffer = io.BytesIO()
        np.save(buffer, audio_response)
        audio_b64 = base64.b64encode(buffer.getvalue()).decode()

        return AudioResponse(
            audio_data=audio_b64,
            text=text_response
        )

    except Exception as e:
        logger.error(f"Inference failed: {str(e)}")
        raise HTTPException(
            status_code=500,
            detail=str(e)
        )

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)