File size: 9,498 Bytes
5506035 b3eaf8f 5506035 b3eaf8f 5506035 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
using System.Collections.Generic;
using UnityEngine;
using Unity.Sentis;
using System.Text;
using Unity.Collections;
public class RunWhisper : MonoBehaviour
{
Worker decoder1, decoder2, encoder, spectrogram;
Worker argmax;
public AudioClip audioClip;
// This is how many tokens you want. It can be adjusted.
const int maxTokens = 100;
// Special tokens see added tokens file for details
const int END_OF_TEXT = 50257;
const int START_OF_TRANSCRIPT = 50258;
const int ENGLISH = 50259;
const int GERMAN = 50261;
const int FRENCH = 50265;
const int TRANSCRIBE = 50359; //for speech-to-text in specified language
const int TRANSLATE = 50358; //for speech-to-text then translate to English
const int NO_TIME_STAMPS = 50363;
const int START_TIME = 50364;
int numSamples;
string[] tokens;
int tokenCount = 0;
NativeArray<int> outputTokens;
// Used for special character decoding
int[] whiteSpaceCharacters = new int[256];
Tensor<float> encodedAudio;
bool transcribe = false;
string outputString = "";
// Maximum size of audioClip (30s at 16kHz)
const int maxSamples = 30 * 16000;
public ModelAsset audioDecoder1, audioDecoder2;
public ModelAsset audioEncoder;
public ModelAsset logMelSpectro;
public async void Start()
{
SetupWhiteSpaceShifts();
GetTokens();
decoder1 = new Worker(ModelLoader.Load(audioDecoder1), BackendType.GPUCompute);
decoder2 = new Worker(ModelLoader.Load(audioDecoder2), BackendType.GPUCompute);
FunctionalGraph graph = new FunctionalGraph();
var input = graph.AddInput(DataType.Float, new DynamicTensorShape(1, 1, 51865));
var amax = Functional.ArgMax(input, -1, false);
var selectTokenModel = graph.Compile(amax);
argmax = new Worker(selectTokenModel, BackendType.GPUCompute);
encoder = new Worker(ModelLoader.Load(audioEncoder), BackendType.GPUCompute);
spectrogram = new Worker(ModelLoader.Load(logMelSpectro), BackendType.GPUCompute);
outputTokens = new NativeArray<int>(maxTokens, Allocator.Persistent);
outputTokens[0] = START_OF_TRANSCRIPT;
outputTokens[1] = ENGLISH;// GERMAN;//FRENCH;//
outputTokens[2] = TRANSCRIBE; //TRANSLATE;//
//outputTokens[3] = NO_TIME_STAMPS;// START_TIME;//
tokenCount = 3;
LoadAudio();
EncodeAudio();
transcribe = true;
tokensTensor = new Tensor<int>(new TensorShape(1, maxTokens));
ComputeTensorData.Pin(tokensTensor);
tokensTensor.Reshape(new TensorShape(1, tokenCount));
tokensTensor.dataOnBackend.Upload<int>(outputTokens, tokenCount);
lastToken = new NativeArray<int>(1, Allocator.Persistent); lastToken[0] = NO_TIME_STAMPS;
lastTokenTensor = new Tensor<int>(new TensorShape(1, 1), new[] { NO_TIME_STAMPS });
while (true)
{
if (!transcribe || tokenCount >= (outputTokens.Length - 1))
return;
m_Awaitable = InferenceStep();
await m_Awaitable;
}
}
Awaitable m_Awaitable;
NativeArray<int> lastToken;
Tensor<int> lastTokenTensor;
Tensor<int> tokensTensor;
Tensor<float> audioInput;
void LoadAudio()
{
numSamples = audioClip.samples;
var data = new float[maxSamples];
numSamples = maxSamples;
audioClip.GetData(data, 0);
audioInput = new Tensor<float>(new TensorShape(1, numSamples), data);
}
void EncodeAudio()
{
spectrogram.Schedule(audioInput);
var logmel = spectrogram.PeekOutput() as Tensor<float>;
encoder.Schedule(logmel);
encodedAudio = encoder.PeekOutput() as Tensor<float>;
}
async Awaitable InferenceStep()
{
decoder1.SetInput("input_ids", tokensTensor);
decoder1.SetInput("encoder_hidden_states", encodedAudio);
decoder1.Schedule();
var past_key_values_0_decoder_key = decoder1.PeekOutput("present.0.decoder.key") as Tensor<float>;
var past_key_values_0_decoder_value = decoder1.PeekOutput("present.0.decoder.value") as Tensor<float>;
var past_key_values_1_decoder_key = decoder1.PeekOutput("present.1.decoder.key") as Tensor<float>;
var past_key_values_1_decoder_value = decoder1.PeekOutput("present.1.decoder.value") as Tensor<float>;
var past_key_values_2_decoder_key = decoder1.PeekOutput("present.2.decoder.key") as Tensor<float>;
var past_key_values_2_decoder_value = decoder1.PeekOutput("present.2.decoder.value") as Tensor<float>;
var past_key_values_3_decoder_key = decoder1.PeekOutput("present.3.decoder.key") as Tensor<float>;
var past_key_values_3_decoder_value = decoder1.PeekOutput("present.3.decoder.value") as Tensor<float>;
var past_key_values_0_encoder_key = decoder1.PeekOutput("present.0.encoder.key") as Tensor<float>;
var past_key_values_0_encoder_value = decoder1.PeekOutput("present.0.encoder.value") as Tensor<float>;
var past_key_values_1_encoder_key = decoder1.PeekOutput("present.1.encoder.key") as Tensor<float>;
var past_key_values_1_encoder_value = decoder1.PeekOutput("present.1.encoder.value") as Tensor<float>;
var past_key_values_2_encoder_key = decoder1.PeekOutput("present.2.encoder.key") as Tensor<float>;
var past_key_values_2_encoder_value = decoder1.PeekOutput("present.2.encoder.value") as Tensor<float>;
var past_key_values_3_encoder_key = decoder1.PeekOutput("present.3.encoder.key") as Tensor<float>;
var past_key_values_3_encoder_value = decoder1.PeekOutput("present.3.encoder.value") as Tensor<float>;
decoder2.SetInput("input_ids", lastTokenTensor);
decoder2.SetInput("past_key_values.0.decoder.key", past_key_values_0_decoder_key);
decoder2.SetInput("past_key_values.0.decoder.value", past_key_values_0_decoder_value);
decoder2.SetInput("past_key_values.1.decoder.key", past_key_values_1_decoder_key);
decoder2.SetInput("past_key_values.1.decoder.value", past_key_values_1_decoder_value);
decoder2.SetInput("past_key_values.2.decoder.key", past_key_values_2_decoder_key);
decoder2.SetInput("past_key_values.2.decoder.value", past_key_values_2_decoder_value);
decoder2.SetInput("past_key_values.3.decoder.key", past_key_values_3_decoder_key);
decoder2.SetInput("past_key_values.3.decoder.value", past_key_values_3_decoder_value);
decoder2.SetInput("past_key_values.0.encoder.key", past_key_values_0_encoder_key);
decoder2.SetInput("past_key_values.0.encoder.value", past_key_values_0_encoder_value);
decoder2.SetInput("past_key_values.1.encoder.key", past_key_values_1_encoder_key);
decoder2.SetInput("past_key_values.1.encoder.value", past_key_values_1_encoder_value);
decoder2.SetInput("past_key_values.2.encoder.key", past_key_values_2_encoder_key);
decoder2.SetInput("past_key_values.2.encoder.value", past_key_values_2_encoder_value);
decoder2.SetInput("past_key_values.3.encoder.key", past_key_values_3_encoder_key);
decoder2.SetInput("past_key_values.3.encoder.value", past_key_values_3_encoder_value);
decoder2.Schedule();
var logits = decoder2.PeekOutput("logits") as Tensor<float>;
argmax.Schedule(logits);
using var t_Token = await argmax.PeekOutput().ReadbackAndCloneAsync() as Tensor<int>;
int index = t_Token[0];
outputTokens[tokenCount] = lastToken[0];
lastToken[0] = index;
tokenCount++;
tokensTensor.Reshape(new TensorShape(1, tokenCount));
tokensTensor.dataOnBackend.Upload<int>(outputTokens, tokenCount);
lastTokenTensor.dataOnBackend.Upload<int>(lastToken, 1);
if (index == END_OF_TEXT)
{
transcribe = false;
}
else if (index < tokens.Length)
{
outputString += GetUnicodeText(tokens[index]);
}
Debug.Log(outputString);
}
// Tokenizer
public TextAsset jsonFile;
void GetTokens()
{
var vocab = Newtonsoft.Json.JsonConvert.DeserializeObject<Dictionary<string, int>>(jsonFile.text);
tokens = new string[vocab.Count];
foreach (var item in vocab)
{
tokens[item.Value] = item.Key;
}
}
string GetUnicodeText(string text)
{
var bytes = Encoding.GetEncoding("ISO-8859-1").GetBytes(ShiftCharacterDown(text));
return Encoding.UTF8.GetString(bytes);
}
string ShiftCharacterDown(string text)
{
string outText = "";
foreach (char letter in text)
{
outText += ((int)letter <= 256) ? letter :
(char)whiteSpaceCharacters[(int)(letter - 256)];
}
return outText;
}
void SetupWhiteSpaceShifts()
{
for (int i = 0, n = 0; i < 256; i++)
{
if (IsWhiteSpace((char)i)) whiteSpaceCharacters[n++] = i;
}
}
bool IsWhiteSpace(char c)
{
return !(('!' <= c && c <= '~') || ('�' <= c && c <= '�') || ('�' <= c && c <= '�'));
}
private void OnDestroy()
{
decoder1.Dispose();
decoder2.Dispose();
encoder.Dispose();
spectrogram.Dispose();
argmax.Dispose();
audioInput.Dispose();
lastTokenTensor.Dispose();
tokensTensor.Dispose();
}
}
|