Commit
·
2e7f9cc
1
Parent(s):
d8735e9
Update script to Sentis 2.1.2
Browse files- yolov8n.onnx → Models/yolov8n.onnx +2 -2
- README.md +11 -14
- RunYOLO8n.cs +44 -62
- info.js +0 -5
- info.json +11 -2
- yolov8n.sentis +0 -3
yolov8n.onnx → Models/yolov8n.onnx
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:341ad75c98ff88775c63e899e7cbbf497c13161e3393b95b620a6cab65052811
|
3 |
+
size 6435893
|
README.md
CHANGED
@@ -2,24 +2,21 @@
|
|
2 |
library_name: unity-sentis
|
3 |
pipeline_tag: object-detection
|
4 |
---
|
5 |
-
# YOLOv8n validated for Unity Sentis (Version 1.
|
6 |
-
*Version 1.3.0 sentis files are not compatible with 1.4.0 and will need to be recreated/downloaded
|
7 |
|
8 |
-
[YOLOv8n](https://docs.ultralytics.com/models/yolov8/) is a real-time multi-object recognition model confirmed to run in Unity
|
9 |
|
10 |
## How to Use
|
11 |
-
First get the package `com.unity.sentis` from the package manager.
|
12 |
-
You will also need the Unity UI package.
|
13 |
-
|
14 |
-
* Create a new scene in Unity 2023.
|
15 |
-
* Install `com.unity.sentis` version `1.4.0-pre.3` from the package manager
|
16 |
-
* Add the c# script to the Main Camera.
|
17 |
-
* Create a Raw Image in the scene and link it as the `displayImage`
|
18 |
-
* Drag the yolov8n.sentis file into the model asset field
|
19 |
-
* Drag the classes.txt on to the labelAssets field
|
20 |
-
* Put a video file in the Assets/StreamingAssets folder and set the name of videoName to the filename in the script
|
21 |
-
* Set the fields for the bounding box texture sprite (you can [create your own one](https://docs.unity3d.com/Manual/9SliceSprites.html) using a transparent texture or use an inbuilt one) and the font
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
## Preview
|
25 |
If working correctly you should see something like this:
|
|
|
2 |
library_name: unity-sentis
|
3 |
pipeline_tag: object-detection
|
4 |
---
|
5 |
+
# YOLOv8n validated for Unity Sentis (Version 2.1.2)
|
|
|
6 |
|
7 |
+
[YOLOv8n](https://docs.ultralytics.com/models/yolov8/) is a real-time multi-object recognition model confirmed to run in Unity 6000.
|
8 |
|
9 |
## How to Use
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
* Create a new scene in Unity 6000;
|
12 |
+
* Install `com.unity.sentis` version `2.1.2` from the package manager;
|
13 |
+
* Add the `RunYOLO8n.cs` script to the Main Camera;
|
14 |
+
* Drag the `Models/yolov8n.onnx` file into the `Model Asset` field;
|
15 |
+
* Drag the `classes.txt` file into the `Classes Asset` field;
|
16 |
+
* Create a `GameObject > UI > Raw Image` object in the scene, set its width and height to 640, and link it as the `Display Image` field;
|
17 |
+
* Drag the `Border Texture.png` file into the `Border Texture` field;
|
18 |
+
* Select an appropriate font in the `Font` field;
|
19 |
+
* Put a video file in the `Assets/StreamingAssets` folder and set the `Video Filename` field to the filename of the video.
|
20 |
|
21 |
## Preview
|
22 |
If working correctly you should see something like this:
|
RunYOLO8n.cs
CHANGED
@@ -3,7 +3,6 @@ using Unity.Sentis;
|
|
3 |
using UnityEngine;
|
4 |
using UnityEngine.UI;
|
5 |
using UnityEngine.Video;
|
6 |
-
using Lays = Unity.Sentis.Layers;
|
7 |
using System.IO;
|
8 |
using FF = Unity.Sentis.Functional;
|
9 |
|
@@ -11,41 +10,37 @@ using FF = Unity.Sentis.Functional;
|
|
11 |
* YOLOv8n Inference Script
|
12 |
* ========================
|
13 |
*
|
14 |
-
* Place this script on the Main Camera.
|
15 |
-
*
|
16 |
-
* Place the yolob8n.sentis file in the asset folder and drag onto the asset field
|
17 |
-
* Place a *.mp4 video file in the Assets/StreamingAssets folder
|
18 |
-
* Create a RawImage in your scene and set it as the displayImage field
|
19 |
-
* Drag the classes.txt into the labelsAsset field
|
20 |
-
* Add a reference to a sprite image for the bounding box and a font for the text
|
21 |
*
|
22 |
*/
|
23 |
|
24 |
-
|
25 |
public class RunYOLO8n : MonoBehaviour
|
26 |
{
|
27 |
-
|
28 |
-
public ModelAsset
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
// Create a Raw Image in the scene and link it here:
|
35 |
public RawImage displayImage;
|
36 |
-
|
37 |
-
|
38 |
public Texture2D borderTexture;
|
39 |
-
|
|
|
40 |
public Font font;
|
41 |
|
|
|
|
|
|
|
42 |
const BackendType backend = BackendType.GPUCompute;
|
43 |
|
44 |
private Transform displayLocation;
|
45 |
-
private
|
46 |
private string[] labels;
|
47 |
private RenderTexture targetRT;
|
48 |
-
|
49 |
|
50 |
//Image size for the model
|
51 |
private const int imageWidth = 640;
|
@@ -60,9 +55,8 @@ public class RunYOLO8n : MonoBehaviour
|
|
60 |
|
61 |
[SerializeField, Range(0, 1)] float iouThreshold = 0.5f;
|
62 |
[SerializeField, Range(0, 1)] float scoreThreshold = 0.5f;
|
63 |
-
int maxOutputBoxes = 64;
|
64 |
|
65 |
-
|
66 |
//bounding box data
|
67 |
public struct BoundingBox
|
68 |
{
|
@@ -80,7 +74,7 @@ public class RunYOLO8n : MonoBehaviour
|
|
80 |
Screen.orientation = ScreenOrientation.LandscapeLeft;
|
81 |
|
82 |
//Parse neural net labels
|
83 |
-
labels =
|
84 |
|
85 |
LoadModel();
|
86 |
|
@@ -91,19 +85,15 @@ public class RunYOLO8n : MonoBehaviour
|
|
91 |
|
92 |
SetupInput();
|
93 |
|
94 |
-
|
95 |
-
{
|
96 |
-
borderSprite = Sprite.Create(borderTexture, new Rect(0, 0, borderTexture.width, borderTexture.height), new Vector2(borderTexture.width / 2, borderTexture.height / 2));
|
97 |
-
}
|
98 |
}
|
99 |
void LoadModel()
|
100 |
{
|
101 |
|
102 |
//Load model
|
103 |
-
|
104 |
-
var model1 = ModelLoader.Load(asset);
|
105 |
|
106 |
-
centersToCorners = new
|
107 |
new float[]
|
108 |
{
|
109 |
1, 0, 1, 0,
|
@@ -113,26 +103,20 @@ public class RunYOLO8n : MonoBehaviour
|
|
113 |
});
|
114 |
|
115 |
//Here we transform the output of the model1 by feeding it through a Non-Max-Suppression layer.
|
116 |
-
var
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
},
|
131 |
-
InputDef.FromModel(model1)[0]
|
132 |
-
);
|
133 |
-
|
134 |
-
//Create engine to run model
|
135 |
-
engine = WorkerFactory.CreateWorker(backend, model2);
|
136 |
}
|
137 |
|
138 |
void SetupInput()
|
@@ -140,7 +124,7 @@ public class RunYOLO8n : MonoBehaviour
|
|
140 |
video = gameObject.AddComponent<VideoPlayer>();
|
141 |
video.renderMode = VideoRenderMode.APIOnly;
|
142 |
video.source = VideoSource.Url;
|
143 |
-
video.url = Path.Join(Application.streamingAssetsPath,
|
144 |
video.isLooping = true;
|
145 |
video.Play();
|
146 |
}
|
@@ -167,14 +151,12 @@ public class RunYOLO8n : MonoBehaviour
|
|
167 |
}
|
168 |
else return;
|
169 |
|
170 |
-
using
|
171 |
-
|
172 |
-
|
173 |
-
var output = engine.PeekOutput("output_0") as TensorFloat;
|
174 |
-
var labelIDs = engine.PeekOutput("output_1") as TensorInt;
|
175 |
|
176 |
-
output.
|
177 |
-
labelIDs.
|
178 |
|
179 |
float displayWidth = displayImage.rectTransform.rect.width;
|
180 |
float displayHeight = displayImage.rectTransform.rect.height;
|
@@ -270,6 +252,6 @@ public class RunYOLO8n : MonoBehaviour
|
|
270 |
private void OnDestroy()
|
271 |
{
|
272 |
centersToCorners?.Dispose();
|
273 |
-
|
274 |
}
|
275 |
-
}
|
|
|
3 |
using UnityEngine;
|
4 |
using UnityEngine.UI;
|
5 |
using UnityEngine.Video;
|
|
|
6 |
using System.IO;
|
7 |
using FF = Unity.Sentis.Functional;
|
8 |
|
|
|
10 |
* YOLOv8n Inference Script
|
11 |
* ========================
|
12 |
*
|
13 |
+
* Place this script on the Main Camera and set the script parameters according to the tooltips.
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
*
|
15 |
*/
|
16 |
|
|
|
17 |
public class RunYOLO8n : MonoBehaviour
|
18 |
{
|
19 |
+
[Tooltip("Drag a YOLO model .onnx file here")]
|
20 |
+
public ModelAsset modelAsset;
|
21 |
+
|
22 |
+
[Tooltip("Drag the classes.txt here")]
|
23 |
+
public TextAsset classesAsset;
|
24 |
+
|
25 |
+
[Tooltip("Create a Raw Image in the scene and link it here")]
|
|
|
26 |
public RawImage displayImage;
|
27 |
+
|
28 |
+
[Tooltip("Drag a border box texture here")]
|
29 |
public Texture2D borderTexture;
|
30 |
+
|
31 |
+
[Tooltip("Select an appropriate font for the labels")]
|
32 |
public Font font;
|
33 |
|
34 |
+
[Tooltip("Change this to the name of the video you put in the Assets/StreamingAssets folder")]
|
35 |
+
public string videoFilename = "giraffes.mp4";
|
36 |
+
|
37 |
const BackendType backend = BackendType.GPUCompute;
|
38 |
|
39 |
private Transform displayLocation;
|
40 |
+
private Worker worker;
|
41 |
private string[] labels;
|
42 |
private RenderTexture targetRT;
|
43 |
+
private Sprite borderSprite;
|
44 |
|
45 |
//Image size for the model
|
46 |
private const int imageWidth = 640;
|
|
|
55 |
|
56 |
[SerializeField, Range(0, 1)] float iouThreshold = 0.5f;
|
57 |
[SerializeField, Range(0, 1)] float scoreThreshold = 0.5f;
|
|
|
58 |
|
59 |
+
Tensor<float> centersToCorners;
|
60 |
//bounding box data
|
61 |
public struct BoundingBox
|
62 |
{
|
|
|
74 |
Screen.orientation = ScreenOrientation.LandscapeLeft;
|
75 |
|
76 |
//Parse neural net labels
|
77 |
+
labels = classesAsset.text.Split('\n');
|
78 |
|
79 |
LoadModel();
|
80 |
|
|
|
85 |
|
86 |
SetupInput();
|
87 |
|
88 |
+
borderSprite = Sprite.Create(borderTexture, new Rect(0, 0, borderTexture.width, borderTexture.height), new Vector2(borderTexture.width / 2, borderTexture.height / 2));
|
|
|
|
|
|
|
89 |
}
|
90 |
void LoadModel()
|
91 |
{
|
92 |
|
93 |
//Load model
|
94 |
+
var model1 = ModelLoader.Load(modelAsset);
|
|
|
95 |
|
96 |
+
centersToCorners = new Tensor<float>(new TensorShape(4, 4),
|
97 |
new float[]
|
98 |
{
|
99 |
1, 0, 1, 0,
|
|
|
103 |
});
|
104 |
|
105 |
//Here we transform the output of the model1 by feeding it through a Non-Max-Suppression layer.
|
106 |
+
var graph = new FunctionalGraph();
|
107 |
+
var inputs = graph.AddInputs(model1);
|
108 |
+
var modelOutput = FF.Forward(model1, inputs)[0]; //shape=(1,84,8400)
|
109 |
+
var boxCoords = modelOutput[0, 0..4, ..].Transpose(0, 1); //shape=(8400,4)
|
110 |
+
var allScores = modelOutput[0, 4.., ..]; //shape=(80,8400)
|
111 |
+
var scores = FF.ReduceMax(allScores, 0); //shape=(8400)
|
112 |
+
var classIDs = FF.ArgMax(allScores, 0); //shape=(8400)
|
113 |
+
var boxCorners = FF.MatMul(boxCoords, FF.Constant(centersToCorners)); //shape=(8400,4)
|
114 |
+
var indices = FF.NMS(boxCorners, scores, iouThreshold, scoreThreshold); //shape=(N)
|
115 |
+
var coords = FF.IndexSelect(boxCoords, 0, indices); //shape=(N,4)
|
116 |
+
var labelIDs = FF.IndexSelect(classIDs, 0, indices); //shape=(N)
|
117 |
+
|
118 |
+
//Create worker to run model
|
119 |
+
worker = new Worker(graph.Compile(coords, labelIDs), backend);
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
}
|
121 |
|
122 |
void SetupInput()
|
|
|
124 |
video = gameObject.AddComponent<VideoPlayer>();
|
125 |
video.renderMode = VideoRenderMode.APIOnly;
|
126 |
video.source = VideoSource.Url;
|
127 |
+
video.url = Path.Join(Application.streamingAssetsPath, videoFilename);
|
128 |
video.isLooping = true;
|
129 |
video.Play();
|
130 |
}
|
|
|
151 |
}
|
152 |
else return;
|
153 |
|
154 |
+
using Tensor<float> inputTensor = new Tensor<float>(new TensorShape(1, 3, imageHeight, imageWidth));
|
155 |
+
TextureConverter.ToTensor(targetRT, inputTensor, default);
|
156 |
+
worker.Schedule(inputTensor);
|
|
|
|
|
157 |
|
158 |
+
using var output = (worker.PeekOutput("output_0") as Tensor<float>).ReadbackAndClone();
|
159 |
+
using var labelIDs = (worker.PeekOutput("output_1") as Tensor<int>).ReadbackAndClone();
|
160 |
|
161 |
float displayWidth = displayImage.rectTransform.rect.width;
|
162 |
float displayHeight = displayImage.rectTransform.rect.height;
|
|
|
252 |
private void OnDestroy()
|
253 |
{
|
254 |
centersToCorners?.Dispose();
|
255 |
+
worker?.Dispose();
|
256 |
}
|
257 |
+
}
|
info.js
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"version" : [
|
3 |
-
"1.4.0-pre.2"
|
4 |
-
]
|
5 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
info.json
CHANGED
@@ -1,5 +1,14 @@
|
|
1 |
{
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
]
|
5 |
}
|
|
|
1 |
{
|
2 |
+
"code": [
|
3 |
+
"RunYOLO8n.cs"
|
4 |
+
],
|
5 |
+
"models": [
|
6 |
+
"yolov8n.onnx"
|
7 |
+
],
|
8 |
+
"data": [
|
9 |
+
"classes.txt"
|
10 |
+
],
|
11 |
+
"version": [
|
12 |
+
"2.1.2"
|
13 |
]
|
14 |
}
|
yolov8n.sentis
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:72c2ccde7dedd160cd8b62907ff2fa06ffe594d4a0fe0d2b13eb270297ca455c
|
3 |
-
size 12834028
|
|
|
|
|
|
|
|