--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: modernbert_base_slop_classifier results: [] --- # modernbert_base_slop_classifier This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3131 - Accuracy: 0.9412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6.6666666666666675e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 10 - total_train_batch_size: 10 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: constant - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7205 | 0.4667 | 150 | 0.1976 | 0.9235 | | 8.0092 | 0.9334 | 300 | 0.1773 | 0.9353 | | 0.0 | 1.3983 | 450 | 0.3947 | 0.9412 | | 0.0035 | 1.8650 | 600 | 0.3131 | 0.9412 | ### Framework versions - Transformers 4.52.2 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1