|
from pathlib import Path |
|
import matplotlib.pyplot as plt |
|
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,classification_report |
|
from train_test import test_model |
|
import torch |
|
from net import Net |
|
from batch_sampler import BatchSampler |
|
from image_dataset import ImageDataset |
|
from sklearn.metrics import roc_curve, auc, RocCurveDisplay |
|
from sklearn.preprocessing import label_binarize |
|
from itertools import cycle |
|
|
|
import numpy as np |
|
from sklearn.metrics import roc_auc_score |
|
from sklearn.preprocessing import LabelBinarizer |
|
|
|
def create_confusion_matrix(true_labels, predicted_labels): |
|
cm = confusion_matrix(true_labels, predicted_labels) |
|
|
|
disp = ConfusionMatrixDisplay(confusion_matrix=cm) |
|
disp.plot(cmap=plt.cm.Blues) |
|
plt.title('Confusion Matrix') |
|
plt.show() |
|
|
|
|