thoracic-disease-classifier / dc1 /visualise_performance_metrics.py
ummtushar's picture
initial commit
60b0ddc verified
raw
history blame contribute delete
853 Bytes
from pathlib import Path
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,classification_report
from train_test import test_model
import torch
from net import Net
from batch_sampler import BatchSampler
from image_dataset import ImageDataset
from sklearn.metrics import roc_curve, auc, RocCurveDisplay
from sklearn.preprocessing import label_binarize
from itertools import cycle
# from scipy import interp
import numpy as np
from sklearn.metrics import roc_auc_score
from sklearn.preprocessing import LabelBinarizer
def create_confusion_matrix(true_labels, predicted_labels):
cm = confusion_matrix(true_labels, predicted_labels)
# Display it as a heatmap
disp = ConfusionMatrixDisplay(confusion_matrix=cm)
disp.plot(cmap=plt.cm.Blues)
plt.title('Confusion Matrix')
plt.show()