File size: 14,540 Bytes
60b0ddc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# # # # Imports
# # # import torch  
# # # import numpy as np
# # # import pandas as pd
# # # import matplotlib.pyplot as plt
# # # import seaborn as sns
# # # # Imports
# # # import torch  
# # # import numpy as np
# # # import pandas as pd
# # # import matplotlib.pyplot as plt
# # # import seaborn as sns

# # # from sklearn.metrics import confusion_matrix, roc_curve, auc
# # # from typing import Callable, List, Tuple
# # # import torch.nn as nn
# # # from pathlib import Path
# # # import torch.nn.functional as F
# # # from yaml import FlowSequenceStartToken  
# # # from sklearn.metrics import confusion_matrix, roc_curve, auc
# # # from typing import Callable, List, Tuple
# # # import torch.nn as nn
# # # from pathlib import Path
# # # import torch.nn.functional as F
# # # from yaml import FlowSequenceStartToken  

# # Import files 
# from image_dataset import ImageDataset
# from net import Net, ResNetModel, EfficientNetModel
# from train_test import train_model, test_model
# from batch_sampler import BatchSampler

# NOTE: File used in the very beginning of the project. Please ignore!

# maincolor = '#4a8cffff'
# secondcolor = '#e06666'

# # Train data
# labels_train_path = 'dc1/data/Y_train.npy'
# data_train_path = 'dc1/data/X_train.npy'
# # Test data
# labels_test_path = 'dc1/data/Y_test.npy'
# data_test_path = 'dc1/data/X_test.npy'


# y_train = np.load(labels_train_path)
# unique_labels = np.unique(y_train)
# data_train = np.load(data_train_path)


# # Data Verification to check if we all have everything good
# data_shape = data_train.shape
# data_type = data_train.dtype
# labels_shape = y_train.shape
# labels_type = y_train.dtype
# print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")

# # Check the range and distribution of features
# data_range = (np.min(data_train), np.max(data_train))

# # Label Encoding in accordance to the diseases
# class_names_mapping = {
#     0: 'Atelectasis',
#     1: 'Effusion',
#     2: 'Infiltration',
#     3: 'No Finding',
#     4: 'Nodule',
#     5: 'Pneumonia'
# }
 
# print("Unique classes in the training set:")
# for class_id in unique_labels:
#     print(f"Class ID {class_id}: {class_names_mapping[class_id]}")

# # df for distribution analysis
# df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))

# ###################################################################
# ###########   A D V A N C E D         A N L Y S I S     ###########
# ##################################################################

# # Y test data (labels)
# y_test = np.load(labels_test_path)

# # Initialize model (NET)
# n_classes = 6
# # NOTE : change the nn here! 
# model = Net(n_classes=n_classes)  
# # model = ResNetModel(n_classes=n_classes)
# # model = EfficientNetModel(n_classes=n_classes)

# # Device for test_model function call
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model.to(device)

# # Initialize the loss function
# loss_function = nn.CrossEntropyLoss()  # we can use another, this one i found in internet but I was getting errors...


# # # Data Verification to check if we all have everything good
# # data_shape = data_train.shape
# # data_type = data_train.dtype
# # labels_shape = y_train.shape
# # labels_type = y_train.dtype
# # print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# # print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")

# # # Check the range and distribution of features
# # data_range = (np.min(data_train), np.max(data_train))

# # # Label Encoding in accordance to the diseases
# # class_names_mapping = {
# #     0: 'Atelectasis',
# #     1: 'Effusion',
# #     2: 'Infiltration',
# #     3: 'No Finding',
# #     4: 'Nodule',
# #     5: 'Pneumonia'
# # }
 
# # print("Unique classes in the training set:")
# # for class_id in unique_labels:
# #     print(f"Class ID {class_id}: {class_names_mapping[class_id]}")

# # # df for distribution analysis
# # df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))

# # ###################################################################
# # ###########   A D V A N C E D         A N L Y S I S     ###########
# # ##################################################################

# # # Y test data (labels)
# # y_test = np.load(labels_test_path)

# # # Initialize model (NET)
# # n_classes = 6
# # # NOTE : change the nn here! 
# # model = Net(n_classes=n_classes)  
# # # model = ResNetModel(n_classes=n_classes)
# # # model = EfficientNetModel(n_classes=n_classes)

# # # Device for test_model function call
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# # model.to(device)

# # # Initialize the loss function
# # loss_function = nn.CrossEntropyLoss()  # we can use another, this one i found in internet but I was getting errors...

# # # Load test dataset w function
# # test_dataset = ImageDataset(Path("dc1/data/X_test.npy"), Path("dc1/data/Y_test.npy"))

# # # Initialize the BatchSampler 
# # batch_size = 32  
# # test_loader = BatchSampler(batch_size=batch_size, dataset=test_dataset, balanced=False)  #  'balanced' or not we can choose depending on what we want

# # # Function call
# # losses, predicted_labels, true_labels, probabilities = test_model(model, test_loader, loss_function, device)

# #####################  R O C     C U R V E   #####################
# def plot_multiclass_roc_curve(y_true, y_scores, num_classes):
#     # Compute ROC curve and ROC area for each class
#     fpr = dict()
#     tpr = dict()
#     roc_auc = dict()
    
#     for i in range(num_classes):
#         fpr[i], tpr[i], _ = roc_curve(y_true[:, i], y_scores[:, i])
#         roc_auc[i] = auc(fpr[i], tpr[i])

#     # Plot all ROC curves
#     plt.figure()
#     for i in range(num_classes):
#         plt.plot(fpr[i], tpr[i], label=f'ROC curve of class {i} (area = {roc_auc[i]:.2f})')

#     plt.plot([0, 1], [0, 1], 'k--')
#     plt.xlim([0.0, 1.0])
#     plt.ylim([0.0, 1.05])
#     plt.xlabel('False Positive Rate')
#     plt.ylabel('True Positive Rate')
#     plt.title('Multiclass ROC Curve')
#     plt.legend(loc="lower right")
#     plt.show()

# # Calculate the probabilities for each class
# model_predictions = []
# model_probabilities = []
# model_probabilities = F.softmax(torch.tensor(model_predictions), dim=0).numpy()

# plot_multiclass_roc_curve(y_test_binarized, model_probabilities, n_classes)

# model.eval()  # Set the model to evaluation mode
# with torch.no_grad():  # Turn off gradients for the following block
#     for data, target in test_loader:
#         data, target = data.to(device), target.to(device)
#         output = model(data)
        
#         # Get class predictions
#         _, preds = torch.max(output, 1)
#         model_predictions.extend(preds.cpu().numpy())
        
#         # Get probabilities for the positive class
#         probs = F.softmax(output, dim=1)[:, 1]  # Adjust the index based on your positive class
#         model_probabilities.extend(probs.cpu().numpy())

# # # Specificity = 		    Number of true negatives (Number of true negatives + number of false positives) =		    
# # # = Total number of individuals without the illness

# # def sensitivity_specificity(conf_matrix):
# #     num_classes = conf_matrix.shape[0]
# #     sensitivity = np.zeros(num_classes)
# #     specificity = np.zeros(num_classes)

# #     for i in range(num_classes):
# #         TP = conf_matrix[i, i]
# #         FN = sum(conf_matrix[i, :]) - TP
# #         FP = sum(conf_matrix[:, i]) - TP
# #         TN = conf_matrix.sum() - (TP + FP + FN)

# #         sensitivity[i] = TP / (TP + FN) if (TP + FN) != 0 else 0
# #         specificity[i] = TN / (TN + FP) if (TN + FP) != 0 else 0

# #     return sensitivity, specificity

# # from sklearn.preprocessing import label_binarize

# # # Binarize the labels for multiclass (suggestion of LLM)
# # y_test_binarized = label_binarize(y_test, classes=np.unique(y_test))

# # #####################  R O C     C U R V E   #####################
# # def plot_multiclass_roc_curve(y_true, y_scores, num_classes):
# #     # Compute ROC curve and ROC area for each class
# #     fpr = dict()
# #     tpr = dict()
# #     roc_auc = dict()
    
# #     for i in range(num_classes):
# #         fpr[i], tpr[i], _ = roc_curve(y_true[:, i], y_scores[:, i])
# #         roc_auc[i] = auc(fpr[i], tpr[i])

# #     # Plot all ROC curves
# #     plt.figure()
# #     for i in range(num_classes):
# #         plt.plot(fpr[i], tpr[i], label=f'ROC curve of class {i} (area = {roc_auc[i]:.2f})')

# #     plt.plot([0, 1], [0, 1], 'k--')
# #     plt.xlim([0.0, 1.0])
# #     plt.ylim([0.0, 1.05])
# #     plt.xlabel('False Positive Rate')
# #     plt.ylabel('True Positive Rate')
# #     plt.title('Multiclass ROC Curve')
# #     plt.legend(loc="lower right")
# #     plt.show()

# # # Calculate the probabilities for each class
# # model_predictions = []
# # model_probabilities = []
# # model_probabilities = F.softmax(torch.tensor(model_predictions), dim=0).numpy()

# # plot_multiclass_roc_curve(y_test_binarized, model_probabilities, n_classes)

# # model.eval()  # Set the model to evaluation mode
# # with torch.no_grad():  # Turn off gradients for the following block
# #     for data, target in test_loader:
# #         data, target = data.to(device), target.to(device)
# #         output = model(data)
        
# #         # Get class predictions
# #         _, preds = torch.max(output, 1)
# #         model_predictions.extend(preds.cpu().numpy())
        
# #         # Get probabilities for the positive class
# #         probs = F.softmax(output, dim=1)[:, 1]  # Adjust the index based on your positive class
# #         model_probabilities.extend(probs.cpu().numpy())


# # # Calculate sensitivity and specificity
# # sensitivity, specificity = sensitivity_specificity(y_test, model_predictions)
# # print(f"Sensitivity: {sensitivity}")
# # print(f"Specificity: {specificity}")


# # ##################################################################################################################################################################

# # # # Display the images, 1 for each class
# # # def display_images(images, titles, num_images):
# # #     plt.figure(figsize=(15, 5))
# # #     for i in range(num_images):
# # #         image = np.squeeze(images[i]) # squeeze to make it easy to ptint in 2d
# # #         plt.subplot(1, num_images, i + 1)
# # #         plt.imshow(image, cmap='gray')
# # #         plt.title(titles[i])
# # #         plt.axis('off')
# # #     plt.show()

# # >>>>>>> ab59272 (Net / ResNet / EfficientNet  Experiments)
# # # data_train = np.load(data_train_path)


# # # # Data Verification to check if we all have everything good
# # # data_shape = data_train.shape
# # # data_type = data_train.dtype
# # # labels_shape = y_train.shape
# # # labels_type = y_train.dtype
# # # print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# # # print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")

# # # # Check the range and distribution of features
# # # data_range = (np.min(data_train), np.max(data_train))

# # # # Label Encoding in accordance to the diseases
# # # class_names_mapping = {
# # #     0: 'Atelectasis',
# # #     1: 'Effusion',
# # #     2: 'Infiltration',
# # #     3: 'No Finding',
# # #     4: 'Nodule',
# # #     5: 'Pneumonia'
# # # }
 
# # # print("Unique classes in the training set:")
# # # for class_id in unique_labels:
# # #     print(f"Class ID {class_id}: {class_names_mapping[class_id]}")

# # # # df for distribution analysis
# # # df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))


# # # Calculate the probabilities for each class
# # model_predictions = []
# # model_probabilities = []
# # model_probabilities = F.softmax(torch.tensor(model_predictions), dim=0).numpy()

# # plot_multiclass_roc_curve(y_test_binarized, model_probabilities, n_classes)

# # model.eval()  # Set the model to evaluation mode
# # with torch.no_grad():  # Turn off gradients for the following block
# #     for data, target in test_loader:
# #         data, target = data.to(device), target.to(device)
# #         output = model(data)
        
# #         # Get class predictions
# #         _, preds = torch.max(output, 1)
# #         model_predictions.extend(preds.cpu().numpy())
        
# #         # Get probabilities for the positive class
# #         probs = F.softmax(output, dim=1)[:, 1]  # Adjust the index based on your positive class
# #         model_probabilities.extend(probs.cpu().numpy())


# # # Calculate sensitivity and specificity
# # sensitivity, specificity = sensitivity_specificity(y_test, model_predictions)
# # print(f"Sensitivity: {sensitivity}")
# # print(f"Specificity: {specificity}")


# # ##################################################################################################################################################################

# # # # Display the images, 1 for each class
# # # def display_images(images, titles, num_images):
# # #     plt.figure(figsize=(15, 5))
# # #     for i in range(num_images):
# # #         image = np.squeeze(images[i]) # squeeze to make it easy to ptint in 2d
# # #         plt.subplot(1, num_images, i + 1)
# # #         plt.imshow(image, cmap='gray')
# # #         plt.title(titles[i])
# # #         plt.axis('off')
# # #     plt.show()

# # >>>>>>> ab59272 (Net / ResNet / EfficientNet  Experiments)
# # # data_train = np.load(data_train_path)


# # # # Data Verification to check if we all have everything good
# # # data_shape = data_train.shape
# # # data_type = data_train.dtype
# # # labels_shape = y_train.shape
# # # labels_type = y_train.dtype
# # # print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# # # print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")

# # # # Check the range and distribution of features
# # # data_range = (np.min(data_train), np.max(data_train))

# # # # Label Encoding in accordance to the diseases
# # # class_names_mapping = {
# # #     0: 'Atelectasis',
# # #     1: 'Effusion',
# # #     2: 'Infiltration',
# # #     3: 'No Finding',
# # #     4: 'Nodule',
# # #     5: 'Pneumonia'
# # # }
 
# # # print("Unique classes in the training set:")
# # # for class_id in unique_labels:
# # #     print(f"Class ID {class_id}: {class_names_mapping[class_id]}")

# # # # df for distribution analysis
# # # df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))