File size: 14,540 Bytes
60b0ddc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
# # # # Imports
# # # import torch
# # # import numpy as np
# # # import pandas as pd
# # # import matplotlib.pyplot as plt
# # # import seaborn as sns
# # # # Imports
# # # import torch
# # # import numpy as np
# # # import pandas as pd
# # # import matplotlib.pyplot as plt
# # # import seaborn as sns
# # # from sklearn.metrics import confusion_matrix, roc_curve, auc
# # # from typing import Callable, List, Tuple
# # # import torch.nn as nn
# # # from pathlib import Path
# # # import torch.nn.functional as F
# # # from yaml import FlowSequenceStartToken
# # # from sklearn.metrics import confusion_matrix, roc_curve, auc
# # # from typing import Callable, List, Tuple
# # # import torch.nn as nn
# # # from pathlib import Path
# # # import torch.nn.functional as F
# # # from yaml import FlowSequenceStartToken
# # Import files
# from image_dataset import ImageDataset
# from net import Net, ResNetModel, EfficientNetModel
# from train_test import train_model, test_model
# from batch_sampler import BatchSampler
# NOTE: File used in the very beginning of the project. Please ignore!
# maincolor = '#4a8cffff'
# secondcolor = '#e06666'
# # Train data
# labels_train_path = 'dc1/data/Y_train.npy'
# data_train_path = 'dc1/data/X_train.npy'
# # Test data
# labels_test_path = 'dc1/data/Y_test.npy'
# data_test_path = 'dc1/data/X_test.npy'
# y_train = np.load(labels_train_path)
# unique_labels = np.unique(y_train)
# data_train = np.load(data_train_path)
# # Data Verification to check if we all have everything good
# data_shape = data_train.shape
# data_type = data_train.dtype
# labels_shape = y_train.shape
# labels_type = y_train.dtype
# print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")
# # Check the range and distribution of features
# data_range = (np.min(data_train), np.max(data_train))
# # Label Encoding in accordance to the diseases
# class_names_mapping = {
# 0: 'Atelectasis',
# 1: 'Effusion',
# 2: 'Infiltration',
# 3: 'No Finding',
# 4: 'Nodule',
# 5: 'Pneumonia'
# }
# print("Unique classes in the training set:")
# for class_id in unique_labels:
# print(f"Class ID {class_id}: {class_names_mapping[class_id]}")
# # df for distribution analysis
# df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))
# ###################################################################
# ########### A D V A N C E D A N L Y S I S ###########
# ##################################################################
# # Y test data (labels)
# y_test = np.load(labels_test_path)
# # Initialize model (NET)
# n_classes = 6
# # NOTE : change the nn here!
# model = Net(n_classes=n_classes)
# # model = ResNetModel(n_classes=n_classes)
# # model = EfficientNetModel(n_classes=n_classes)
# # Device for test_model function call
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# model.to(device)
# # Initialize the loss function
# loss_function = nn.CrossEntropyLoss() # we can use another, this one i found in internet but I was getting errors...
# # # Data Verification to check if we all have everything good
# # data_shape = data_train.shape
# # data_type = data_train.dtype
# # labels_shape = y_train.shape
# # labels_type = y_train.dtype
# # print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# # print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")
# # # Check the range and distribution of features
# # data_range = (np.min(data_train), np.max(data_train))
# # # Label Encoding in accordance to the diseases
# # class_names_mapping = {
# # 0: 'Atelectasis',
# # 1: 'Effusion',
# # 2: 'Infiltration',
# # 3: 'No Finding',
# # 4: 'Nodule',
# # 5: 'Pneumonia'
# # }
# # print("Unique classes in the training set:")
# # for class_id in unique_labels:
# # print(f"Class ID {class_id}: {class_names_mapping[class_id]}")
# # # df for distribution analysis
# # df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))
# # ###################################################################
# # ########### A D V A N C E D A N L Y S I S ###########
# # ##################################################################
# # # Y test data (labels)
# # y_test = np.load(labels_test_path)
# # # Initialize model (NET)
# # n_classes = 6
# # # NOTE : change the nn here!
# # model = Net(n_classes=n_classes)
# # # model = ResNetModel(n_classes=n_classes)
# # # model = EfficientNetModel(n_classes=n_classes)
# # # Device for test_model function call
# # device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# # model.to(device)
# # # Initialize the loss function
# # loss_function = nn.CrossEntropyLoss() # we can use another, this one i found in internet but I was getting errors...
# # # Load test dataset w function
# # test_dataset = ImageDataset(Path("dc1/data/X_test.npy"), Path("dc1/data/Y_test.npy"))
# # # Initialize the BatchSampler
# # batch_size = 32
# # test_loader = BatchSampler(batch_size=batch_size, dataset=test_dataset, balanced=False) # 'balanced' or not we can choose depending on what we want
# # # Function call
# # losses, predicted_labels, true_labels, probabilities = test_model(model, test_loader, loss_function, device)
# ##################### R O C C U R V E #####################
# def plot_multiclass_roc_curve(y_true, y_scores, num_classes):
# # Compute ROC curve and ROC area for each class
# fpr = dict()
# tpr = dict()
# roc_auc = dict()
# for i in range(num_classes):
# fpr[i], tpr[i], _ = roc_curve(y_true[:, i], y_scores[:, i])
# roc_auc[i] = auc(fpr[i], tpr[i])
# # Plot all ROC curves
# plt.figure()
# for i in range(num_classes):
# plt.plot(fpr[i], tpr[i], label=f'ROC curve of class {i} (area = {roc_auc[i]:.2f})')
# plt.plot([0, 1], [0, 1], 'k--')
# plt.xlim([0.0, 1.0])
# plt.ylim([0.0, 1.05])
# plt.xlabel('False Positive Rate')
# plt.ylabel('True Positive Rate')
# plt.title('Multiclass ROC Curve')
# plt.legend(loc="lower right")
# plt.show()
# # Calculate the probabilities for each class
# model_predictions = []
# model_probabilities = []
# model_probabilities = F.softmax(torch.tensor(model_predictions), dim=0).numpy()
# plot_multiclass_roc_curve(y_test_binarized, model_probabilities, n_classes)
# model.eval() # Set the model to evaluation mode
# with torch.no_grad(): # Turn off gradients for the following block
# for data, target in test_loader:
# data, target = data.to(device), target.to(device)
# output = model(data)
# # Get class predictions
# _, preds = torch.max(output, 1)
# model_predictions.extend(preds.cpu().numpy())
# # Get probabilities for the positive class
# probs = F.softmax(output, dim=1)[:, 1] # Adjust the index based on your positive class
# model_probabilities.extend(probs.cpu().numpy())
# # # Specificity = Number of true negatives (Number of true negatives + number of false positives) =
# # # = Total number of individuals without the illness
# # def sensitivity_specificity(conf_matrix):
# # num_classes = conf_matrix.shape[0]
# # sensitivity = np.zeros(num_classes)
# # specificity = np.zeros(num_classes)
# # for i in range(num_classes):
# # TP = conf_matrix[i, i]
# # FN = sum(conf_matrix[i, :]) - TP
# # FP = sum(conf_matrix[:, i]) - TP
# # TN = conf_matrix.sum() - (TP + FP + FN)
# # sensitivity[i] = TP / (TP + FN) if (TP + FN) != 0 else 0
# # specificity[i] = TN / (TN + FP) if (TN + FP) != 0 else 0
# # return sensitivity, specificity
# # from sklearn.preprocessing import label_binarize
# # # Binarize the labels for multiclass (suggestion of LLM)
# # y_test_binarized = label_binarize(y_test, classes=np.unique(y_test))
# # ##################### R O C C U R V E #####################
# # def plot_multiclass_roc_curve(y_true, y_scores, num_classes):
# # # Compute ROC curve and ROC area for each class
# # fpr = dict()
# # tpr = dict()
# # roc_auc = dict()
# # for i in range(num_classes):
# # fpr[i], tpr[i], _ = roc_curve(y_true[:, i], y_scores[:, i])
# # roc_auc[i] = auc(fpr[i], tpr[i])
# # # Plot all ROC curves
# # plt.figure()
# # for i in range(num_classes):
# # plt.plot(fpr[i], tpr[i], label=f'ROC curve of class {i} (area = {roc_auc[i]:.2f})')
# # plt.plot([0, 1], [0, 1], 'k--')
# # plt.xlim([0.0, 1.0])
# # plt.ylim([0.0, 1.05])
# # plt.xlabel('False Positive Rate')
# # plt.ylabel('True Positive Rate')
# # plt.title('Multiclass ROC Curve')
# # plt.legend(loc="lower right")
# # plt.show()
# # # Calculate the probabilities for each class
# # model_predictions = []
# # model_probabilities = []
# # model_probabilities = F.softmax(torch.tensor(model_predictions), dim=0).numpy()
# # plot_multiclass_roc_curve(y_test_binarized, model_probabilities, n_classes)
# # model.eval() # Set the model to evaluation mode
# # with torch.no_grad(): # Turn off gradients for the following block
# # for data, target in test_loader:
# # data, target = data.to(device), target.to(device)
# # output = model(data)
# # # Get class predictions
# # _, preds = torch.max(output, 1)
# # model_predictions.extend(preds.cpu().numpy())
# # # Get probabilities for the positive class
# # probs = F.softmax(output, dim=1)[:, 1] # Adjust the index based on your positive class
# # model_probabilities.extend(probs.cpu().numpy())
# # # Calculate sensitivity and specificity
# # sensitivity, specificity = sensitivity_specificity(y_test, model_predictions)
# # print(f"Sensitivity: {sensitivity}")
# # print(f"Specificity: {specificity}")
# # ##################################################################################################################################################################
# # # # Display the images, 1 for each class
# # # def display_images(images, titles, num_images):
# # # plt.figure(figsize=(15, 5))
# # # for i in range(num_images):
# # # image = np.squeeze(images[i]) # squeeze to make it easy to ptint in 2d
# # # plt.subplot(1, num_images, i + 1)
# # # plt.imshow(image, cmap='gray')
# # # plt.title(titles[i])
# # # plt.axis('off')
# # # plt.show()
# # >>>>>>> ab59272 (Net / ResNet / EfficientNet Experiments)
# # # data_train = np.load(data_train_path)
# # # # Data Verification to check if we all have everything good
# # # data_shape = data_train.shape
# # # data_type = data_train.dtype
# # # labels_shape = y_train.shape
# # # labels_type = y_train.dtype
# # # print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# # # print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")
# # # # Check the range and distribution of features
# # # data_range = (np.min(data_train), np.max(data_train))
# # # # Label Encoding in accordance to the diseases
# # # class_names_mapping = {
# # # 0: 'Atelectasis',
# # # 1: 'Effusion',
# # # 2: 'Infiltration',
# # # 3: 'No Finding',
# # # 4: 'Nodule',
# # # 5: 'Pneumonia'
# # # }
# # # print("Unique classes in the training set:")
# # # for class_id in unique_labels:
# # # print(f"Class ID {class_id}: {class_names_mapping[class_id]}")
# # # # df for distribution analysis
# # # df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))
# # # Calculate the probabilities for each class
# # model_predictions = []
# # model_probabilities = []
# # model_probabilities = F.softmax(torch.tensor(model_predictions), dim=0).numpy()
# # plot_multiclass_roc_curve(y_test_binarized, model_probabilities, n_classes)
# # model.eval() # Set the model to evaluation mode
# # with torch.no_grad(): # Turn off gradients for the following block
# # for data, target in test_loader:
# # data, target = data.to(device), target.to(device)
# # output = model(data)
# # # Get class predictions
# # _, preds = torch.max(output, 1)
# # model_predictions.extend(preds.cpu().numpy())
# # # Get probabilities for the positive class
# # probs = F.softmax(output, dim=1)[:, 1] # Adjust the index based on your positive class
# # model_probabilities.extend(probs.cpu().numpy())
# # # Calculate sensitivity and specificity
# # sensitivity, specificity = sensitivity_specificity(y_test, model_predictions)
# # print(f"Sensitivity: {sensitivity}")
# # print(f"Specificity: {specificity}")
# # ##################################################################################################################################################################
# # # # Display the images, 1 for each class
# # # def display_images(images, titles, num_images):
# # # plt.figure(figsize=(15, 5))
# # # for i in range(num_images):
# # # image = np.squeeze(images[i]) # squeeze to make it easy to ptint in 2d
# # # plt.subplot(1, num_images, i + 1)
# # # plt.imshow(image, cmap='gray')
# # # plt.title(titles[i])
# # # plt.axis('off')
# # # plt.show()
# # >>>>>>> ab59272 (Net / ResNet / EfficientNet Experiments)
# # # data_train = np.load(data_train_path)
# # # # Data Verification to check if we all have everything good
# # # data_shape = data_train.shape
# # # data_type = data_train.dtype
# # # labels_shape = y_train.shape
# # # labels_type = y_train.dtype
# # # print(f"Data Shape: {data_shape}, Data Type: {data_type}")
# # # print(f"Labels Shape: {labels_shape}, Labels Type: {labels_type}")
# # # # Check the range and distribution of features
# # # data_range = (np.min(data_train), np.max(data_train))
# # # # Label Encoding in accordance to the diseases
# # # class_names_mapping = {
# # # 0: 'Atelectasis',
# # # 1: 'Effusion',
# # # 2: 'Infiltration',
# # # 3: 'No Finding',
# # # 4: 'Nodule',
# # # 5: 'Pneumonia'
# # # }
# # # print("Unique classes in the training set:")
# # # for class_id in unique_labels:
# # # print(f"Class ID {class_id}: {class_names_mapping[class_id]}")
# # # # df for distribution analysis
# # # df_data_range = pd.DataFrame(data_train.reshape(data_train.shape[0], -1))
|