umairrkhn commited on
Commit
1841026
·
verified ·
1 Parent(s): 6bfcbb2

Model save

Browse files
Files changed (1) hide show
  1. README.md +10 -12
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.996
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [Marqo/nsfw-image-detection-384](https://huggingface.co/Marqo/nsfw-image-detection-384) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.0254
37
- - Accuracy: 0.996
38
 
39
  ## Model description
40
 
@@ -53,23 +53,21 @@ More information needed
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
- - learning_rate: 5e-05
57
  - train_batch_size: 16
58
- - eval_batch_size: 8
59
  - seed: 42
60
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
- - lr_scheduler_type: linear
62
- - num_epochs: 3
 
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:------:|:----:|:---------------:|:--------:|
68
- | 0.0375 | 0.5066 | 500 | 0.0067 | 0.998 |
69
- | 0.0138 | 1.0132 | 1000 | 0.0001 | 1.0 |
70
- | 0.0028 | 1.5198 | 1500 | 0.0001 | 1.0 |
71
- | 0.002 | 2.0263 | 2000 | 0.0000 | 1.0 |
72
- | 0.0013 | 2.5329 | 2500 | 0.0000 | 1.0 |
73
 
74
 
75
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 1.0
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [Marqo/nsfw-image-detection-384](https://huggingface.co/Marqo/nsfw-image-detection-384) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.0003
37
+ - Accuracy: 1.0
38
 
39
  ## Model description
40
 
 
53
  ### Training hyperparameters
54
 
55
  The following hyperparameters were used during training:
56
+ - learning_rate: 2e-05
57
  - train_batch_size: 16
58
+ - eval_batch_size: 16
59
  - seed: 42
60
  - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
61
+ - lr_scheduler_type: cosine
62
+ - lr_scheduler_warmup_ratio: 0.1
63
+ - num_epochs: 1.5
64
 
65
  ### Training results
66
 
67
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
68
  |:-------------:|:------:|:----:|:---------------:|:--------:|
69
+ | 0.0041 | 0.5066 | 500 | 0.0147 | 0.996 |
70
+ | 0.0023 | 1.0132 | 1000 | 0.0003 | 1.0 |
 
 
 
71
 
72
 
73
  ### Framework versions