{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac0313d240>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac0313d2d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac0313d360>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac0313d3f0>", "_build": "<function ActorCriticPolicy._build at 0x7fac0313d480>", "forward": "<function ActorCriticPolicy.forward at 0x7fac0313d510>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fac0313d5a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac0313d630>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac0313d6c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac0313d750>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac0313d7e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac0313d870>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fac038e8780>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1200128, "_total_timesteps": 1200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1702022332259687285, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOadgD1e160/OdMVP3eztb4E8ZU7Lh43PgAAAAAAAAAApju6vbwTvD/LOwu/dSBmvGi/jr3EqKW+AAAAAAAAAADNuRi9n/mJuz8AHDwSTqI84ifOPDbjib0AAIA/AACAP8p9wj4vKic/wtPNPEPYM79HRuY+1iECvgAAAAAAAAAAWpYevkpACj8zyCy9wkUSv2wGJb3+EoM8AAAAAAAAAADA8oA9iselPw81qz5jTAS/7jamPXArYT4AAAAAAAAAAOY/Zb1KzXE+gjcWPW+P0b4Affq8BzXEPAAAAAAAAAAAgN8hPR/xnz+DfUU+KgEev0BSgz2VOOk9AAAAAAAAAADN+Hs8jlCyP6FwRT9mcNG+41N+vK6LBr4AAAAAAAAAAIDzFT0pmGO6Fmg1uJMuJ7PMuyK5hVFVNwAAgD8AAIA/cO6Gvg9hGD8jnc6+zgRSv9oJsL4ufBi+AAAAAAAAAAAzi6E8rs2guihDvr2dah46bruIuhQaCbsAAIA/AACAPzM/Br2zGB0/RmZWvXFkOb+/eog971wBPQAAAAAAAAAAmpmSuAcEsz/V4iW8nqolvlaM1rrWiAo9AAAAAAAAAADgsCa++JGGP6ooHL+272a/tE0qvizMFb4AAAAAAAAAAM2UeDyR6ZQ/erYlPdUzR7/KbGo9hvnaPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00010666666666669933, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAcioCMglqMAWyUS7mMAXSUR0DDwMZ2MbWFdX2UKGgGR0BxgDMFEAo5aAdLz2gIR0DDwNaVfNRndX2UKGgGR0Bv4+L5ylvZaAdLrGgIR0DDwQPkzXSSdX2UKGgGR0Bvocm6XjU/aAdLrWgIR0DDwQWjXWe6dX2UKGgGR0Bw1FvsJIDpaAdLvmgIR0DDwQlSl3yJdX2UKGgGR0Bzc3DR+jM3aAdNGAJoCEdAw8EOlSCOFXV9lChoBkdARLFlI3BHkWgHS35oCEdAw8ETt3OfNHV9lChoBkdAcdXY+0PYnWgHS9JoCEdAw8EbH3lCC3V9lChoBkdAcgAF49ovjGgHS8xoCEdAw8EcO8TSLXV9lChoBkdAc6VMdtEXtWgHS+xoCEdAw8EfA57w8XV9lChoBkdAcdBhzvJA+2gHS9NoCEdAw8EqlEZzgnV9lChoBkdAcRXa72+PBGgHS8ZoCEdAw8FD9oexOnV9lChoBkdAchGBOHnEEWgHS95oCEdAw8Hwq/dqL3V9lChoBkdAbeLpCa7Va2gHS65oCEdAw8IRTKkl/3V9lChoBkdAc3W1Ng0CR2gHS/FoCEdAw8ISSGJvYXV9lChoBkdAcNzywfQrtmgHS71oCEdAw8IYOYIBzXV9lChoBkdAc5FV+7UXpGgHTUsBaAhHQMPCHgWac7R1fZQoaAZHQG+RI0ygwoNoB0usaAhHQMPCIwco6S11fZQoaAZHQHGqxPKuB+ZoB0vKaAhHQMPCI7CaZx91fZQoaAZHQHF6g79ycTdoB0vXaAhHQMPCNTiS7oV1fZQoaAZHQHBx+6/Zdv9oB0vRaAhHQMPCNd25hBt1fZQoaAZHQHEBO0TlDF9oB0vAaAhHQMPCXlr2xpt1fZQoaAZHQEnCBwuM+/xoB0t9aAhHQMPCifcnE2p1fZQoaAZHQHGiMLfDUExoB0vAaAhHQMPCjfW+XZ51fZQoaAZHQG5FOBlMAWBoB0usaAhHQMPComaH9FZ1fZQoaAZHQHD+stPHktFoB0upaAhHQMPCpl1bJOp1fZQoaAZHQHFXHf2saKloB0u1aAhHQMPCqdc8klh1fZQoaAZHQHLH55eJHiFoB0ufaAhHQMPDTBLf1pV1fZQoaAZHQHMp2vr4WUNoB0vTaAhHQMPDYM5fdAR1fZQoaAZHQHQL6d+XqqxoB027AmgIR0DDw26WLP2PdX2UKGgGR0By/YLCvX9SaAdL22gIR0DDw29VtGd7dX2UKGgGR0BzbkMnZ00WaAdLy2gIR0DDw3Z+lTFVdX2UKGgGR0BRzcM7U5MlaAdLjmgIR0DDw7WtlqagdX2UKGgGR0B0BBK28Zk1aAdL42gIR0DDw7wbS7XhdX2UKGgGR0Bx85PIn0CjaAdLumgIR0DDw8LonrprdX2UKGgGR0BzxWRA8jiXaAdN7AFoCEdAw8PJ7Z39rHV9lChoBkdAFIaef7Jnx2gHS2hoCEdAw8POso2GZnV9lChoBkdAcENRJ2+wkmgHS7doCEdAw8P3+BH09XV9lChoBkdAcPF1+y7f52gHS9poCEdAw8QAoUBXCHV9lChoBkdAbcfIPK+zt2gHS+ZoCEdAw8QEt4A0bnV9lChoBkdAQb+7z06HTWgHS2NoCEdAw8QTzFuNxXV9lChoBkdAcibtFKCg9WgHS9FoCEdAw8Q1FdcB2nV9lChoBkdAcezLiuMdcWgHS8xoCEdAw8Q4QEIPb3V9lChoBkdAcIxiobXHzmgHTQYBaAhHQMPE4kHD7651fZQoaAZHQHIleUMXrMVoB0uaaAhHQMPE6KYZ2p11fZQoaAZHQHDUlqWTouBoB0ulaAhHQMPE69IGyHF1fZQoaAZHQHHt3rMTviNoB0ujaAhHQMPE9ZFgDzR1fZQoaAZHQHHxLxmTTv1oB0vFaAhHQMPFBFHJ9y91fZQoaAZHQFFWIeo1k2BoB03oA2gIR0DDxS7ufEn9dX2UKGgGR0BxPa89Oh0yaAdLu2gIR0DDxWbgl4TsdX2UKGgGR0BxyV91EE1VaAdLpWgIR0DDxXsvoNd7dX2UKGgGR0BvpFByCFsYaAdN+wJoCEdAw8WR+d9Uj3V9lChoBkdAc96Vu76HkGgHS/loCEdAw8WWzhxYJXV9lChoBkdAcc0AeaKDTWgHS8ZoCEdAw8WjXTVlPXV9lChoBkdAct7akhzNlmgHS6toCEdAw8WxE/B3zXV9lChoBkdAcZhrMC9ytGgHS59oCEdAw8W5xVhkRXV9lChoBkdAcVVruIAOrmgHS7VoCEdAw8XEQHRkVnV9lChoBkdAYr7FcY64lWgHTegDaAhHQMPF1XtrsSl1fZQoaAZHQHIXnrIHTqloB00lAWgIR0DDxdb6BRQ8dX2UKGgGR0BxFgvvjOs1aAdLvWgIR0DDxe3fCQ9zdX2UKGgGR0BysI+7lJYlaAdNOgFoCEdAw8agGjbi63V9lChoBkdAcPd9i+cpb2gHS8ZoCEdAw8bRBciW3XV9lChoBkdAS9rvqkdmx2gHS55oCEdAw8by1D0Dl3V9lChoBkdAci59itq59WgHS9VoCEdAw8cExIJ7cHV9lChoBkdAcWbcvM8oyGgHS71oCEdAw8cKB/Zuh3V9lChoBkdAclci0v4/NmgHS55oCEdAw8cLDZUT+XV9lChoBkdAcNwxT850bWgHS85oCEdAw8cK3EQ5FXV9lChoBkdAcHsVJ+UhV2gHS7RoCEdAw8cOHnEET3V9lChoBkdAcqe6F/QSjGgHS61oCEdAw8cQgyuZC3V9lChoBkdAWvgT0xubZ2gHTegDaAhHQMPHIRHww0x1fZQoaAZHQHF/QHZ9NN9oB0uoaAhHQMPHI9FnZkF1fZQoaAZHQHEbLjDKoydoB0vCaAhHQMPHKwT238Z1fZQoaAZHQHFCW9QGfPJoB0u0aAhHQMPHLAtFrmB1fZQoaAZHQEmxlijL0SRoB0uiaAhHQMPHLYu01Il1fZQoaAZHQG+M+pwS8J5oB0uuaAhHQMPHN/5tWMl1fZQoaAZHQHCjfVI7NjdoB0vHaAhHQMPHaTjm0Vt1fZQoaAZHQG79vQ4S6DpoB0uoaAhHQMPIBaIFeOZ1fZQoaAZHQEuKloDgZTBoB0t8aAhHQMPIF8do3711fZQoaAZHQHDA6nrIHTtoB0vBaAhHQMPIGnIZIhB1fZQoaAZHQG90MwDeTFFoB0u6aAhHQMPIGsjeKsN1fZQoaAZHQHLhaRhc7hhoB0vLaAhHQMPIIizC1qp1fZQoaAZHQHK9Luc+aBtoB0vTaAhHQMPIIsj3VTd1fZQoaAZHQHHqfqxC6YpoB0u4aAhHQMPIKU+TvAp1fZQoaAZHQHE2Y1DSgGtoB0u2aAhHQMPIKtx2jfx1fZQoaAZHQHCyDG1hLGtoB0u6aAhHQMPINZZbILh1fZQoaAZHQHEebL+xW1doB0vEaAhHQMPIPwkona51fZQoaAZHQHE9YMOPNmloB00+AmgIR0DDyEDu+h4/dX2UKGgGR0By0hB8hLXdaAdNNwFoCEdAw8huCRwIdHV9lChoBkdAcK+zUqhDgWgHS7hoCEdAw8hxhegL7XV9lChoBkdAWsmLzf779GgHTegDaAhHQMPIdhY3eep1fZQoaAZHQHItLzf779BoB02BAWgIR0DDyIksBhhIdX2UKGgGR0BtYqQ7tAs1aAdLqGgIR0DDyInE2pAEdX2UKGgGR0BwmEfMfRu1aAdLq2gIR0DDyI3H7xd6dX2UKGgGR0BwI7u5SWJKaAdNSQFoCEdAw8iUbXpW3nV9lChoBkdAcYLfV7Qb/GgHS75oCEdAw8iZR1oxpXV9lChoBkdAcvJHIZIg/2gHS9poCEdAw8iao0ALiXV9lChoBkdAcZ+tozvZy2gHS7hoCEdAw8icHYYixHV9lChoBkdAby+D0163RWgHS7NoCEdAw8ie0vXbunV9lChoBkdAcccc6NlyzWgHS7JoCEdAw8ifBxgiNnV9lChoBkdAcEOx3FDOT2gHS8RoCEdAw8iilByCF3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2152, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 256, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |