|
import torch |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer |
|
import sys |
|
|
|
|
|
from ... import utils as util |
|
|
|
|
|
class T5XXL_NL2TL_translator(): |
|
def __init__(self) -> None: |
|
|
|
peft_model_id="model_weight/tf-ltl_eng_test_mid_ascii_gptAuged" |
|
self.max_target_length=128 |
|
|
|
self.config = PeftConfig.from_pretrained(peft_model_id) |
|
|
|
|
|
self.model = AutoModelForSeq2SeqLM.from_pretrained(self.config.base_model_name_or_path, load_in_8bit=True, device_map="auto") |
|
self.tokenizer = AutoTokenizer.from_pretrained(self.config.base_model_name_or_path, device_map="auto") |
|
|
|
|
|
self.model = PeftModel.from_pretrained(self.model, peft_model_id, device_map="auto") |
|
self.model.eval() |
|
|
|
print("Peft model loaded") |
|
|
|
pass |
|
def translate(self,input:str=""): |
|
input_prompt= "Generate LTL: " + input |
|
replace=util.Task2Preplacer() |
|
|
|
input_prompt=replace.reTask2P(input_prompt) |
|
|
|
print(input_prompt) |
|
input_ids = self.tokenizer(input_prompt, return_tensors="pt", truncation=True).input_ids.cuda() |
|
outputs = self.model.generate(input_ids=input_ids, max_new_tokens=self.max_target_length, do_sample=True, top_p=0.9) |
|
output_txt= self.tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0] |
|
print(output_txt) |
|
return replace.reP2Task(output_txt) |
|
|
|
|
|
if __name__=="__main__": |
|
test_prompts=[ |
|
"Task_1.1.1 must precede Task_1.1.2, which in turn should precede Task_1.1.3, ensuring that arranging fruits happens before preparing vegetables and prepping eggs and meats is done last.", |
|
"Task_1.1 must be completed before Task_1.2 starts, and Task_1.2 must be completed before Task_1.3 starts." |
|
] |
|
|
|
translater=T5XXL_NL2TL_translator() |
|
|
|
for ret in test_prompts: |
|
print(translater.translate(ret)) |
|
|
|
flag=True |
|
while flag: |
|
lines=[""] |
|
try: |
|
lines.append(input()) |
|
while True: |
|
lines.append(input()) |
|
except: |
|
pass |
|
ret ="".join(lines) |
|
print(ret) |
|
if ret=="": |
|
flag=False |
|
|
|
print(translater.translate(ret)) |
|
|
|
|