File size: 13,500 Bytes
d834d9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 |
"""
modified by xsj
This script implements an API for the ChatGLM3-6B model,
formatted similarly to OpenAI's API (https://platform.openai.com/docs/api-reference/chat).
It's designed to be run as a web server using FastAPI and uvicorn,
making the ChatGLM3-6B model accessible through OpenAI Client.
Key Components and Features:
- Model and Tokenizer Setup: Configures the model and tokenizer paths and loads them.
- FastAPI Configuration: Sets up a FastAPI application with CORS middleware for handling cross-origin requests.
- API Endpoints:
- "/v1/models": Lists the available models, specifically ChatGLM3-6B.
- "/v1/chat/completions": Processes chat completion requests with options for streaming and regular responses.
- "/v1/embeddings": Processes Embedding request of a list of text inputs.
- Token Limit Caution: In the OpenAI API, 'max_tokens' is equivalent to HuggingFace's 'max_new_tokens', not 'max_length'.
For instance, setting 'max_tokens' to 8192 for a 6b model would result in an error due to the model's inability to output
that many tokens after accounting for the history and prompt tokens.
- Stream Handling and Custom Functions: Manages streaming responses and custom function calls within chat responses.
- Pydantic Models: Defines structured models for requests and responses, enhancing API documentation and type safety.
- Main Execution: Initializes the model and tokenizer, and starts the FastAPI app on the designated host and port.
Note:
This script doesn't include the setup for special tokens or multi-GPU support by default.
Users need to configure their special tokens and can enable multi-GPU support as per the provided instructions.
Embedding Models only support in One GPU.
"""
import os
import time
import tiktoken
import torch
import uvicorn
from fastapi import FastAPI, HTTPException, Response
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import List, Literal, Optional, Union
from loguru import logger
from pydantic import BaseModel, Field
from transformers import AutoTokenizer, AutoModel
# from utils import process_response, generate_chatglm3, generate_stream_chatglm3
from sentence_transformers import SentenceTransformer
from sse_starlette.sse import EventSourceResponse
# from NL2HLTLtaskPlanner.finetune.Llama2_13b.llama_lora_test import Llama_NL2TL_translator as NL2TL_translator
from NL2HLTLTranslator.mistral7b.prediction import Mistral_NL2TL_translator as NL2TL_translator
# Set up limit request time
EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
# set LLM path
output_dir = os.path.join(os.path.dirname(__file__),"../")
tuned_model_name="mistral7b_quat8"
@asynccontextmanager
async def lifespan(app: FastAPI):
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class FunctionCallResponse(BaseModel):
name: Optional[str] = None
arguments: Optional[str] = None
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system", "function"]
content: str = None
name: Optional[str] = None
function_call: Optional[FunctionCallResponse] = None
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
function_call: Optional[FunctionCallResponse] = None
## for Embedding
class EmbeddingRequest(BaseModel):
input: List[str]
model: str
class CompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class EmbeddingResponse(BaseModel):
data: list
model: str
object: str
usage: CompletionUsage
# for ChatCompletionRequest
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.8
top_p: Optional[float] = 0.8
max_tokens: Optional[int] = None
stream: Optional[bool] = False
tools: Optional[Union[dict, List[dict]]] = None
repetition_penalty: Optional[float] = 1.1
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length", "function_call"]
class ChatCompletionResponseStreamChoice(BaseModel):
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length", "function_call"]]
index: int
class ChatCompletionResponse(BaseModel):
model: str
id: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
@app.get("/health")
async def health() -> Response:
"""Health check."""
return Response(status_code=200)
@app.post("/v1/embeddings", response_model=EmbeddingResponse)
async def get_embeddings(request: EmbeddingRequest):
embeddings = [embedding_model.encode(text) for text in request.input]
embeddings = [embedding.tolist() for embedding in embeddings]
def num_tokens_from_string(string: str) -> int:
"""
Returns the number of tokens in a text string.
use cl100k_base tokenizer
"""
encoding = tiktoken.get_encoding('cl100k_base')
num_tokens = len(encoding.encode(string))
return num_tokens
response = {
"data": [
{
"object": "embedding",
"embedding": embedding,
"index": index
}
for index, embedding in enumerate(embeddings)
],
"model": request.model,
"object": "list",
"usage": CompletionUsage(
prompt_tokens=sum(len(text.split()) for text in request.input),
completion_tokens=0,
total_tokens=sum(num_tokens_from_string(text) for text in request.input),
)
}
return response
@app.get("/v1/models", response_model=ModelList)
async def list_models():
model_card = ModelCard(
id="chatglm3-6b"
)
return ModelList(
data=[model_card]
)
count=0
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
global model, tokenizer, LLM
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
repetition_penalty=request.repetition_penalty,
tools=request.tools,
)
logger.debug(f"==== request ====\n{gen_params}")
# if request.stream:
# # Use the stream mode to read the first few characters, if it is not a function call, direct stram output
# predict_stream_generator = predict_stream(request.model, gen_params)
# output = next(predict_stream_generator)
# if not contains_custom_function(output):
# return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
# # Obtain the result directly at one time and determine whether tools needs to be called.
# logger.debug(f"First result output:\n{output}")
# function_call = None
# if output and request.tools:
# try:
# function_call = process_response(output, use_tool=True)
# except:
# logger.warning("Failed to parse tool call")
# # CallFunction
# if isinstance(function_call, dict):
# function_call = FunctionCallResponse(**function_call)
# """
# In this demo, we did not register any tools.
# You can use the tools that have been implemented in our `tools_using_demo` and implement your own streaming tool implementation here.
# Similar to the following method:
# function_args = json.loads(function_call.arguments)
# tool_response = dispatch_tool(tool_name: str, tool_params: dict)
# """
# tool_response = ""
# if not gen_params.get("messages"):
# gen_params["messages"] = []
# gen_params["messages"].append(ChatMessage(
# role="assistant",
# content=output,
# ))
# gen_params["messages"].append(ChatMessage(
# role="function",
# name=function_call.name,
# content=tool_response,
# ))
# # Streaming output of results after function calls
# generate = predict(request.model, gen_params)
# return EventSourceResponse(generate, media_type="text/event-stream")
# else:
# # Handled to avoid exceptions in the above parsing function process.
# generate = parse_output_text(request.model, output)
# return EventSourceResponse(generate, media_type="text/event-stream")
# Here is the handling of stream = False
# print("gen_params['messages'][0].content",gen_params['messages'][0].content)
response=LLM.translate(gen_params['messages'][0].content)
# print('response',response)
# return response
# response = generate_chatglm3(model, tokenizer, gen_params)
# # Remove the first newline character
# if response["text"].startswith("\n"):
# response["text"] = response["text"][1:]
# response["text"] = response["text"].strip()
usage = UsageInfo()
# function_call, finish_reason = None, "stop"
# if request.tools:
# try:
# function_call = process_response(response["text"], use_tool=True)
# except:
# logger.warning("Failed to parse tool call, maybe the response is not a tool call or have been answered.")
# if isinstance(function_call, dict):
# finish_reason = "function_call"
# function_call = FunctionCallResponse(**function_call)
function_call = None
message = ChatMessage(
role="assistant",
content=response,
function_call=function_call if isinstance(function_call, FunctionCallResponse) else None,
)
logger.debug(f"==== message ====\n{message}")
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
finish_reason='stop',
)
# task_usage = UsageInfo.model_validate(response["usage"])
# for usage_key, usage_value in task_usage.model_dump().items():
# setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
# count+=1
return ChatCompletionResponse(
model=request.model,
id="", # for open_source model, id is empty
choices=[choice_data],
object="chat.completion",
usage=usage
)
async def parse_output_text(model_id: str, value: str):
"""
Directly output the text content of value
:param model_id:
:param value:
:return:
"""
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant", content=value),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
yield '[DONE]'
def contains_custom_function(value: str) -> bool:
"""
Determine whether 'function_call' according to a special function prefix.
For example, the functions defined in "tools_using_demo/tool_register.py" are all "get_xxx" and start with "get_"
[Note] This is not a rigorous judgment method, only for reference.
:param value:
:return:
"""
return value and 'get_' in value
def run(output_dir = "path/to/model_weight", tuned_model_name="llama2_13b__mid_asciiaug1",CUDA_device='0',quat=True):
global LLM
LLM=NL2TL_translator(output_dir=output_dir,tuned_model_name= tuned_model_name,quat=quat)
tokenizer = LLM.tokenizer
model = LLM.model
# load Embedding
# embedding_model = SentenceTransformer(EMBEDDING_PATH, device="cuda")
uvicorn.run(app, host='0.0.0.0', port=8001, workers=1)
if __name__ == "__main__":
# Load LLM
# on alinware mill19
# run()
# on icl-superman
run(output_dir=output_dir,tuned_model_name=tuned_model_name)
# on zju server
|