File size: 2,118 Bytes
416906a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---

metrics:
- code_eval
library_name: transformers
tags:
- code
- llama-cpp
- gguf-my-repo
base_model: WizardLMTeam/WizardCoder-33B-V1.1
model-index:
- name: WizardCoder
  results:
  - task:
      type: text-generation
    dataset:
      name: HumanEval
      type: openai_humaneval
    metrics:
    - type: pass@1
      value: 0.799
      name: pass@1
      verified: false
---


# tsqn/WizardCoder-33B-V1.1-Q8_0-GGUF

This model was converted to GGUF format from [`WizardLMTeam/WizardCoder-33B-V1.1`](https://huggingface.co/WizardLMTeam/WizardCoder-33B-V1.1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.

Refer to the [original model card](https://huggingface.co/WizardLMTeam/WizardCoder-33B-V1.1) for more details on the model.



## Use with llama.cpp

Install llama.cpp through brew (works on Mac and Linux)



```bash

brew install llama.cpp



```

Invoke the llama.cpp server or the CLI.



### CLI:

```bash

llama-cli --hf-repo tsqn/WizardCoder-33B-V1.1-Q8_0-GGUF --hf-file wizardcoder-33b-v1.1-q8_0.gguf -p "The meaning to life and the universe is"

```



### Server:

```bash

llama-server --hf-repo tsqn/WizardCoder-33B-V1.1-Q8_0-GGUF --hf-file wizardcoder-33b-v1.1-q8_0.gguf -c 2048

```



Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.



Step 1: Clone llama.cpp from GitHub.

```

git clone https://github.com/ggerganov/llama.cpp

```



Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).

```

cd llama.cpp && LLAMA_CURL=1 make
```



Step 3: Run inference through the main binary.

```
./llama-cli --hf-repo tsqn/WizardCoder-33B-V1.1-Q8_0-GGUF --hf-file wizardcoder-33b-v1.1-q8_0.gguf -p "The meaning to life and the universe is"
```

or 

```
./llama-server --hf-repo tsqn/WizardCoder-33B-V1.1-Q8_0-GGUF --hf-file wizardcoder-33b-v1.1-q8_0.gguf -c 2048
```