Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,111 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
datasets:
|
4 |
+
- trollek/SimpleInstructionJudge-v01
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
base_model: h2oai/h2o-danube3-4b-base
|
8 |
+
---
|
9 |
+
# LittleInstructionJudge-4B-v0.1
|
10 |
+
|
11 |
+
A BAdam fine-tuned danube3-4b-base to do one thing, and one thing only: Being a lightweight LLM-as-a-Judge for instruction prompts.
|
12 |
+
|
13 |
+
The purpose of training this model is to have a small language model that can filter away the worst offenders when creating datasets using the Magpie method in hardware constrained environments.
|
14 |
+
|
15 |
+
**Important note:** For reasons I don't know, I have issues running models like danube3 in LM Studio. Ollama runs them fine though.
|
16 |
+
|
17 |
+
### Promt template
|
18 |
+
|
19 |
+
```jinja2
|
20 |
+
Judge the instruction below using the following json format:
|
21 |
+
{
|
22 |
+
"intent": <the intent of the users instruction>,
|
23 |
+
"knowledge": <the knowledge required to respond to the instruction>,
|
24 |
+
"task_category": <the primary category that the instruction can be put in>,
|
25 |
+
"other_task_category": [<a list of other task categories that the instruction belongs to>],
|
26 |
+
"difficulty": <a rating of easy, medium or hard>,
|
27 |
+
"quality_explanation": <an explanation of the quality of the users instruction>,
|
28 |
+
"instruct_reward": <an integer between -10 and 10 reflecting the quality of the instruction>
|
29 |
+
}
|
30 |
+
|
31 |
+
This is the instruction I need you to judge:
|
32 |
+
|
33 |
+
{{instruction}}
|
34 |
+
```
|
35 |
+
|
36 |
+
### LLama-Factory training config
|
37 |
+
|
38 |
+
```yaml
|
39 |
+
### model
|
40 |
+
model_name_or_path: danube3/chatml-base
|
41 |
+
|
42 |
+
### method
|
43 |
+
stage: sft
|
44 |
+
do_train: true
|
45 |
+
finetuning_type: full
|
46 |
+
use_badam: true
|
47 |
+
badam_switch_mode: ascending
|
48 |
+
badam_switch_interval: 50
|
49 |
+
badam_start_block: 6
|
50 |
+
badam_verbose: 1
|
51 |
+
seed: 8
|
52 |
+
|
53 |
+
### dataset
|
54 |
+
dataset: balanced_instruction_judge
|
55 |
+
template: chatml
|
56 |
+
cutoff_len: 4096
|
57 |
+
overwrite_cache: false
|
58 |
+
preprocessing_num_workers: 12
|
59 |
+
|
60 |
+
### output
|
61 |
+
output_dir: danube3/trained/LittleInstructionJudge-4B-v0.1
|
62 |
+
logging_steps: 5
|
63 |
+
save_steps: 1
|
64 |
+
save_strategy: epoch
|
65 |
+
plot_loss: true
|
66 |
+
overwrite_output_dir: false
|
67 |
+
|
68 |
+
### train
|
69 |
+
per_device_train_batch_size: 1
|
70 |
+
gradient_accumulation_steps: 4
|
71 |
+
learning_rate: 0.0000015
|
72 |
+
num_train_epochs: 1
|
73 |
+
lr_scheduler_type: cosine
|
74 |
+
warmup_ratio: 0.01
|
75 |
+
pure_bf16: true
|
76 |
+
flash_attn: fa2
|
77 |
+
|
78 |
+
### eval
|
79 |
+
val_size: 0.02
|
80 |
+
per_device_eval_batch_size: 1
|
81 |
+
eval_strategy: steps
|
82 |
+
eval_steps: 1000
|
83 |
+
```
|
84 |
+
|
85 |
+
|
86 |
+
### Training results
|
87 |
+
|
88 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
89 |
+
|:-------------:|:------:|:-----:|:---------------:|
|
90 |
+
| 0.4062 | 0.0441 | 1000 | 0.3899 |
|
91 |
+
| 0.3346 | 0.0882 | 2000 | 0.3520 |
|
92 |
+
| 0.3192 | 0.1323 | 3000 | 0.3342 |
|
93 |
+
| 0.3007 | 0.1763 | 4000 | 0.3239 |
|
94 |
+
| 0.2792 | 0.2204 | 5000 | 0.3165 |
|
95 |
+
| 0.2957 | 0.2645 | 6000 | 0.3111 |
|
96 |
+
| 0.3254 | 0.3086 | 7000 | 0.3064 |
|
97 |
+
| 0.3058 | 0.3527 | 8000 | 0.3033 |
|
98 |
+
| 0.298 | 0.3968 | 9000 | 0.3011 |
|
99 |
+
| 0.3157 | 0.4409 | 10000 | 0.2995 |
|
100 |
+
| 0.3314 | 0.4849 | 11000 | 0.2979 |
|
101 |
+
| 0.301 | 0.5290 | 12000 | 0.2965 |
|
102 |
+
| 0.2927 | 0.5731 | 13000 | 0.2957 |
|
103 |
+
| 0.3199 | 0.6172 | 14000 | 0.2950 |
|
104 |
+
| 0.2924 | 0.6613 | 15000 | 0.2948 |
|
105 |
+
| 0.2784 | 0.7054 | 16000 | 0.2945 |
|
106 |
+
| 0.3069 | 0.7495 | 17000 | 0.2943 |
|
107 |
+
| 0.2813 | 0.7935 | 18000 | 0.2943 |
|
108 |
+
| 0.2934 | 0.8376 | 19000 | 0.2942 |
|
109 |
+
| 0.2762 | 0.8817 | 20000 | 0.2942 |
|
110 |
+
| 0.2792 | 0.9258 | 21000 | 0.2942 |
|
111 |
+
| 0.3057 | 0.9699 | 22000 | 0.2942 |
|