Tony Neel
commited on
Commit
·
8ba5658
1
Parent(s):
41e99e7
Add custom handler for SAM2
Browse files- handler.py +36 -30
- images/20250121_gauge_0001.jpg +0 -0
- requirements.txt +4 -0
- test_endpoint.py +66 -0
handler.py
CHANGED
@@ -1,41 +1,47 @@
|
|
1 |
from typing import Dict, List, Any
|
2 |
-
from
|
3 |
import torch
|
4 |
-
import numpy as np
|
5 |
-
from PIL import Image
|
6 |
-
import io
|
7 |
|
8 |
class EndpointHandler:
|
9 |
def __init__(self, path=""):
|
10 |
-
|
11 |
-
self.
|
12 |
-
|
13 |
-
|
|
|
14 |
"""
|
|
|
15 |
Args:
|
16 |
-
data: Dictionary
|
|
|
17 |
Returns:
|
18 |
-
|
19 |
"""
|
20 |
-
# Get
|
21 |
-
|
22 |
-
raise ValueError("No inputs provided")
|
23 |
-
|
24 |
-
# Convert input image bytes to PIL Image
|
25 |
-
image = Image.open(io.BytesIO(data["inputs"]))
|
26 |
-
image = np.array(image)
|
27 |
|
28 |
-
# Process
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
return
|
39 |
-
"masks": masks,
|
40 |
-
"scores": scores
|
41 |
-
}
|
|
|
1 |
from typing import Dict, List, Any
|
2 |
+
from transformers import SamModel, SamProcessor
|
3 |
import torch
|
|
|
|
|
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path=""):
|
7 |
+
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
8 |
+
self.model = SamModel.from_pretrained(path).to(self.device)
|
9 |
+
self.processor = SamProcessor.from_pretrained(path)
|
10 |
+
|
11 |
+
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
|
12 |
"""
|
13 |
+
Handle image segmentation requests
|
14 |
Args:
|
15 |
+
data: Dictionary containing:
|
16 |
+
inputs: Raw image bytes
|
17 |
Returns:
|
18 |
+
List of dictionaries containing segmentation masks
|
19 |
"""
|
20 |
+
# Get raw image bytes from the request
|
21 |
+
raw_image = data.pop("inputs", data)
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
# Process the image
|
24 |
+
inputs = self.processor(raw_image, return_tensors="pt").to(self.device)
|
25 |
+
|
26 |
+
# Generate image embeddings
|
27 |
+
image_embeddings = self.model.get_image_embeddings(inputs["pixel_values"])
|
28 |
+
|
29 |
+
# Generate masks
|
30 |
+
outputs = self.model.generate(
|
31 |
+
image_embeddings=image_embeddings,
|
32 |
+
return_dict=True
|
33 |
+
)
|
34 |
+
|
35 |
+
# Process outputs
|
36 |
+
masks = outputs.pred_masks.squeeze().cpu().numpy()
|
37 |
+
scores = outputs.iou_scores.squeeze().cpu().numpy()
|
38 |
+
|
39 |
+
# Format response
|
40 |
+
results = []
|
41 |
+
for mask, score in zip(masks, scores):
|
42 |
+
results.append({
|
43 |
+
"mask": mask.tolist(), # Convert numpy array to list for JSON serialization
|
44 |
+
"score": float(score)
|
45 |
+
})
|
46 |
|
47 |
+
return results
|
|
|
|
|
|
images/20250121_gauge_0001.jpg
ADDED
![]() |
requirements.txt
CHANGED
@@ -1 +1,5 @@
|
|
1 |
sam2
|
|
|
|
|
|
|
|
|
|
1 |
sam2
|
2 |
+
transformers
|
3 |
+
torch
|
4 |
+
pillow
|
5 |
+
numpy
|
test_endpoint.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
from pathlib import Path
|
3 |
+
from PIL import Image
|
4 |
+
import io
|
5 |
+
|
6 |
+
def get_stored_token():
|
7 |
+
"""Get the stored HuggingFace token"""
|
8 |
+
token_path = Path.home() / '.cache/huggingface/token'
|
9 |
+
if token_path.exists():
|
10 |
+
with open(token_path, 'r') as f:
|
11 |
+
return f.read().strip()
|
12 |
+
return None
|
13 |
+
|
14 |
+
# Update API URL to use the inference API endpoint
|
15 |
+
API_URL = "https://c3g262qlc7cizj5n.us-east4.gcp.endpoints.huggingface.cloud"
|
16 |
+
token = get_stored_token()
|
17 |
+
|
18 |
+
def query(image_path):
|
19 |
+
# Read image bytes directly
|
20 |
+
with open(image_path, "rb") as f:
|
21 |
+
image_bytes = f.read()
|
22 |
+
|
23 |
+
headers = {
|
24 |
+
"Authorization": f"Bearer {token}",
|
25 |
+
"Content-Type": "image/jpeg"
|
26 |
+
}
|
27 |
+
|
28 |
+
# Print some debug info
|
29 |
+
print(f"Sending file: {image_path}")
|
30 |
+
print(f"Content-Type: {headers['Content-Type']}")
|
31 |
+
print(f"Image size: {len(image_bytes)} bytes")
|
32 |
+
|
33 |
+
response = requests.post(
|
34 |
+
API_URL,
|
35 |
+
headers=headers,
|
36 |
+
data=image_bytes, # Send raw bytes
|
37 |
+
verify=True
|
38 |
+
)
|
39 |
+
|
40 |
+
# Add error handling
|
41 |
+
if response.status_code != 200:
|
42 |
+
print(f"Response headers: {response.headers}")
|
43 |
+
print(f"Request headers sent: {response.request.headers}")
|
44 |
+
return f"Error: {response.status_code}, {response.text}"
|
45 |
+
try:
|
46 |
+
return response.json()
|
47 |
+
except requests.exceptions.JSONDecodeError:
|
48 |
+
return f"Error decoding JSON. Raw response: {response.text}"
|
49 |
+
|
50 |
+
# Test with an image
|
51 |
+
if __name__ == "__main__":
|
52 |
+
# Option 1: Test with specific image
|
53 |
+
image_path = Path("images/20250121_gauge_0001.jpg")
|
54 |
+
|
55 |
+
# Option 2: Test with first image found in directory
|
56 |
+
# TRAIN_IMAGES_DIR = Path("images")
|
57 |
+
# image_path = next(TRAIN_IMAGES_DIR.glob('*.jpg'))
|
58 |
+
|
59 |
+
if not image_path.exists():
|
60 |
+
print(f"Error: Image not found at {image_path}")
|
61 |
+
exit(1)
|
62 |
+
|
63 |
+
print(f"Testing with image: {image_path}")
|
64 |
+
result = query(image_path)
|
65 |
+
print("\nAPI Response:")
|
66 |
+
print(result)
|