File size: 2,683 Bytes
c42eb91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: gpt22gpt2-gpt2-large-cnn-dailymail-seed42
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt22gpt2-gpt2-large-cnn-dailymail-seed42

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6842
- Rouge1: 0.3500
- Rouge2: 0.1477
- Rougel: 0.2169
- Rougelsum: 0.3306

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 3.0

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:------:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|
| 2.6006        | 0.2229 | 2000  | 2.3891          | 0.1904 | 0.0449 | 0.1271 | 0.1782    |
| 2.1985        | 0.4458 | 4000  | 2.0162          | 0.2608 | 0.0874 | 0.1661 | 0.2452    |
| 1.9813        | 0.6687 | 6000  | 1.8433          | 0.2390 | 0.0798 | 0.1570 | 0.2267    |
| 1.8954        | 0.8916 | 8000  | 1.7652          | 0.2694 | 0.0968 | 0.1718 | 0.2533    |
| 1.5988        | 1.1145 | 10000 | 1.7400          | 0.3181 | 0.1275 | 0.1992 | 0.2998    |
| 1.5897        | 1.3374 | 12000 | 1.7119          | 0.3292 | 0.1351 | 0.2049 | 0.3107    |
| 1.5809        | 1.5603 | 14000 | 1.6926          | 0.3452 | 0.1451 | 0.2142 | 0.3262    |
| 1.575         | 1.7832 | 16000 | 1.6679          | 0.3440 | 0.1452 | 0.2149 | 0.3256    |
| 1.5302        | 2.0061 | 18000 | 1.6870          | 0.3512 | 0.1486 | 0.2168 | 0.3316    |
| 1.2726        | 2.2290 | 20000 | 1.7002          | 0.3484 | 0.1460 | 0.2149 | 0.3289    |
| 1.266         | 2.4519 | 22000 | 1.6969          | 0.3473 | 0.1461 | 0.2154 | 0.3279    |
| 1.2566        | 2.6748 | 24000 | 1.6878          | 0.3487 | 0.1469 | 0.2160 | 0.3296    |
| 1.2572        | 2.8977 | 26000 | 1.6842          | 0.3500 | 0.1477 | 0.2169 | 0.3306    |


### Framework versions

- Transformers 4.44.2
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1