Upload RavenForCausalLM
Browse files- README.md +199 -0
- config.json +50 -0
- generation_config.json +4 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +84 -0
- raven_config_minimal.py +96 -0
- raven_modeling_minimal.py +972 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"activation_checkpoint_impl": "per-iteration",
|
3 |
+
"architecture_class_name": "RecurrentGPT",
|
4 |
+
"architectures": [
|
5 |
+
"RavenForCausalLM"
|
6 |
+
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoConfig": "raven_config_minimal.RavenConfig",
|
9 |
+
"AutoModelForCausalLM": "raven_modeling_minimal.RavenForCausalLM"
|
10 |
+
},
|
11 |
+
"bias": false,
|
12 |
+
"block_class_name": "SandwichBlock",
|
13 |
+
"block_size": 4096,
|
14 |
+
"effective_expected_depth": 132,
|
15 |
+
"head_dim": 96,
|
16 |
+
"init_orthogonal": false,
|
17 |
+
"init_strategy": "takase",
|
18 |
+
"init_values": {
|
19 |
+
"embed_scale": 72.6636084983398,
|
20 |
+
"embedding": 0.008703882797784892,
|
21 |
+
"out_proj": 0.0005356869554443541,
|
22 |
+
"std": 0.008703882797784892
|
23 |
+
},
|
24 |
+
"injection_type": "linear",
|
25 |
+
"intermediate_size": 17920,
|
26 |
+
"mean_backprop_depth": 8,
|
27 |
+
"mean_recurrence": 32,
|
28 |
+
"mlp_class_name": "GatedMLP",
|
29 |
+
"model_type": "huginn_raven",
|
30 |
+
"n_embd": 5280,
|
31 |
+
"n_heads": 55,
|
32 |
+
"n_layers": 8,
|
33 |
+
"n_layers_in_coda": 2,
|
34 |
+
"n_layers_in_prelude": 2,
|
35 |
+
"n_layers_in_recurrent_block": 4,
|
36 |
+
"nonlin_name": "SiLU",
|
37 |
+
"norm_class_name": "RMSNorm_llama",
|
38 |
+
"norm_eps": 1e-06,
|
39 |
+
"num_key_value_heads": 55,
|
40 |
+
"padded_vocab_size": 65536,
|
41 |
+
"padding_multiple": 4096,
|
42 |
+
"qk_bias": true,
|
43 |
+
"rope_base": 50000,
|
44 |
+
"sampling_scheme": "poisson-lognormal-filling",
|
45 |
+
"state_init": "like-init",
|
46 |
+
"tie_embeddings": true,
|
47 |
+
"torch_dtype": "float32",
|
48 |
+
"transformers_version": "4.44.2",
|
49 |
+
"vocab_size": 65536
|
50 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"transformers_version": "4.44.2"
|
4 |
+
}
|
model-00001-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8db1d84a031ce6e5c09f5132bc7860400ea7fedcee5eb9334231bab6e9b0846d
|
3 |
+
size 4771970936
|
model-00002-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5ff411e149ff97b09d530751e7d6a3b54501bd3acffc2a9d54017e7a3dbc2679
|
3 |
+
size 4744780096
|
model-00003-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c43fba2a522df37ba80cbcd8f531f7f59a293b9a1833c7140fb4441a69a7af54
|
3 |
+
size 4744737616
|
model-00004-of-00004.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b1d711eff653f3fb96edf96728db959a68ecfce91b3f2a43d653c872c93ca788
|
3 |
+
size 1384120448
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 15645600384
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"freqs_cis": "model-00001-of-00004.safetensors",
|
7 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
8 |
+
"transformer.adapter.weight": "model-00001-of-00004.safetensors",
|
9 |
+
"transformer.coda.0.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
10 |
+
"transformer.coda.0.attn.proj.weight": "model-00003-of-00004.safetensors",
|
11 |
+
"transformer.coda.0.attn.qk_bias": "model-00003-of-00004.safetensors",
|
12 |
+
"transformer.coda.0.mlp.fc.weight": "model-00003-of-00004.safetensors",
|
13 |
+
"transformer.coda.0.mlp.proj.weight": "model-00003-of-00004.safetensors",
|
14 |
+
"transformer.coda.0.norm_1.weight": "model-00003-of-00004.safetensors",
|
15 |
+
"transformer.coda.0.norm_2.weight": "model-00003-of-00004.safetensors",
|
16 |
+
"transformer.coda.0.norm_3.weight": "model-00003-of-00004.safetensors",
|
17 |
+
"transformer.coda.0.norm_4.weight": "model-00003-of-00004.safetensors",
|
18 |
+
"transformer.coda.1.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
19 |
+
"transformer.coda.1.attn.proj.weight": "model-00003-of-00004.safetensors",
|
20 |
+
"transformer.coda.1.attn.qk_bias": "model-00003-of-00004.safetensors",
|
21 |
+
"transformer.coda.1.mlp.fc.weight": "model-00003-of-00004.safetensors",
|
22 |
+
"transformer.coda.1.mlp.proj.weight": "model-00003-of-00004.safetensors",
|
23 |
+
"transformer.coda.1.norm_1.weight": "model-00003-of-00004.safetensors",
|
24 |
+
"transformer.coda.1.norm_2.weight": "model-00003-of-00004.safetensors",
|
25 |
+
"transformer.coda.1.norm_3.weight": "model-00003-of-00004.safetensors",
|
26 |
+
"transformer.coda.1.norm_4.weight": "model-00003-of-00004.safetensors",
|
27 |
+
"transformer.core_block.0.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
28 |
+
"transformer.core_block.0.attn.proj.weight": "model-00002-of-00004.safetensors",
|
29 |
+
"transformer.core_block.0.attn.qk_bias": "model-00001-of-00004.safetensors",
|
30 |
+
"transformer.core_block.0.mlp.fc.weight": "model-00002-of-00004.safetensors",
|
31 |
+
"transformer.core_block.0.mlp.proj.weight": "model-00002-of-00004.safetensors",
|
32 |
+
"transformer.core_block.0.norm_1.weight": "model-00001-of-00004.safetensors",
|
33 |
+
"transformer.core_block.0.norm_2.weight": "model-00002-of-00004.safetensors",
|
34 |
+
"transformer.core_block.0.norm_3.weight": "model-00002-of-00004.safetensors",
|
35 |
+
"transformer.core_block.0.norm_4.weight": "model-00002-of-00004.safetensors",
|
36 |
+
"transformer.core_block.1.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
37 |
+
"transformer.core_block.1.attn.proj.weight": "model-00002-of-00004.safetensors",
|
38 |
+
"transformer.core_block.1.attn.qk_bias": "model-00002-of-00004.safetensors",
|
39 |
+
"transformer.core_block.1.mlp.fc.weight": "model-00002-of-00004.safetensors",
|
40 |
+
"transformer.core_block.1.mlp.proj.weight": "model-00002-of-00004.safetensors",
|
41 |
+
"transformer.core_block.1.norm_1.weight": "model-00002-of-00004.safetensors",
|
42 |
+
"transformer.core_block.1.norm_2.weight": "model-00002-of-00004.safetensors",
|
43 |
+
"transformer.core_block.1.norm_3.weight": "model-00002-of-00004.safetensors",
|
44 |
+
"transformer.core_block.1.norm_4.weight": "model-00002-of-00004.safetensors",
|
45 |
+
"transformer.core_block.2.attn.Wqkv.weight": "model-00002-of-00004.safetensors",
|
46 |
+
"transformer.core_block.2.attn.proj.weight": "model-00002-of-00004.safetensors",
|
47 |
+
"transformer.core_block.2.attn.qk_bias": "model-00002-of-00004.safetensors",
|
48 |
+
"transformer.core_block.2.mlp.fc.weight": "model-00002-of-00004.safetensors",
|
49 |
+
"transformer.core_block.2.mlp.proj.weight": "model-00002-of-00004.safetensors",
|
50 |
+
"transformer.core_block.2.norm_1.weight": "model-00002-of-00004.safetensors",
|
51 |
+
"transformer.core_block.2.norm_2.weight": "model-00002-of-00004.safetensors",
|
52 |
+
"transformer.core_block.2.norm_3.weight": "model-00002-of-00004.safetensors",
|
53 |
+
"transformer.core_block.2.norm_4.weight": "model-00002-of-00004.safetensors",
|
54 |
+
"transformer.core_block.3.attn.Wqkv.weight": "model-00003-of-00004.safetensors",
|
55 |
+
"transformer.core_block.3.attn.proj.weight": "model-00003-of-00004.safetensors",
|
56 |
+
"transformer.core_block.3.attn.qk_bias": "model-00002-of-00004.safetensors",
|
57 |
+
"transformer.core_block.3.mlp.fc.weight": "model-00003-of-00004.safetensors",
|
58 |
+
"transformer.core_block.3.mlp.proj.weight": "model-00003-of-00004.safetensors",
|
59 |
+
"transformer.core_block.3.norm_1.weight": "model-00002-of-00004.safetensors",
|
60 |
+
"transformer.core_block.3.norm_2.weight": "model-00003-of-00004.safetensors",
|
61 |
+
"transformer.core_block.3.norm_3.weight": "model-00003-of-00004.safetensors",
|
62 |
+
"transformer.core_block.3.norm_4.weight": "model-00003-of-00004.safetensors",
|
63 |
+
"transformer.ln_f.weight": "model-00003-of-00004.safetensors",
|
64 |
+
"transformer.prelude.0.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
65 |
+
"transformer.prelude.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
66 |
+
"transformer.prelude.0.attn.qk_bias": "model-00001-of-00004.safetensors",
|
67 |
+
"transformer.prelude.0.mlp.fc.weight": "model-00001-of-00004.safetensors",
|
68 |
+
"transformer.prelude.0.mlp.proj.weight": "model-00001-of-00004.safetensors",
|
69 |
+
"transformer.prelude.0.norm_1.weight": "model-00001-of-00004.safetensors",
|
70 |
+
"transformer.prelude.0.norm_2.weight": "model-00001-of-00004.safetensors",
|
71 |
+
"transformer.prelude.0.norm_3.weight": "model-00001-of-00004.safetensors",
|
72 |
+
"transformer.prelude.0.norm_4.weight": "model-00001-of-00004.safetensors",
|
73 |
+
"transformer.prelude.1.attn.Wqkv.weight": "model-00001-of-00004.safetensors",
|
74 |
+
"transformer.prelude.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
75 |
+
"transformer.prelude.1.attn.qk_bias": "model-00001-of-00004.safetensors",
|
76 |
+
"transformer.prelude.1.mlp.fc.weight": "model-00001-of-00004.safetensors",
|
77 |
+
"transformer.prelude.1.mlp.proj.weight": "model-00001-of-00004.safetensors",
|
78 |
+
"transformer.prelude.1.norm_1.weight": "model-00001-of-00004.safetensors",
|
79 |
+
"transformer.prelude.1.norm_2.weight": "model-00001-of-00004.safetensors",
|
80 |
+
"transformer.prelude.1.norm_3.weight": "model-00001-of-00004.safetensors",
|
81 |
+
"transformer.prelude.1.norm_4.weight": "model-00001-of-00004.safetensors",
|
82 |
+
"transformer.wte.weight": "model-00001-of-00004.safetensors"
|
83 |
+
}
|
84 |
+
}
|
raven_config_minimal.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A HuggingFace-style model configuration."""
|
2 |
+
|
3 |
+
from transformers import PretrainedConfig
|
4 |
+
from math import sqrt
|
5 |
+
|
6 |
+
|
7 |
+
class RavenConfig(PretrainedConfig):
|
8 |
+
model_type = "huginn_raven"
|
9 |
+
keys_to_ignore_at_inference = [""]
|
10 |
+
attribute_map = {"num_attention_heads": "n_heads", "hidden_size": "n_embd", "num_hidden_layers": "n_layers"}
|
11 |
+
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
n_embd: int = 5280,
|
15 |
+
n_heads: int = 55,
|
16 |
+
n_layers: int = 8, # total of prelude + recurrent + coda
|
17 |
+
block_size: int = 4096,
|
18 |
+
vocab_size: int = 65536,
|
19 |
+
padding_multiple: int = 4096,
|
20 |
+
tie_embeddings: bool = True,
|
21 |
+
intermediate_size: int = 17920,
|
22 |
+
bias: bool = False,
|
23 |
+
architecture_class_name: str = "RecurrentGPT",
|
24 |
+
block_class_name: str = "SandwichBlock",
|
25 |
+
norm_class_name: str = "RMSNorm_llama",
|
26 |
+
norm_eps: float = 0.000001,
|
27 |
+
mlp_class_name: str = "GatedMLP",
|
28 |
+
nonlin_name: str = "SiLU",
|
29 |
+
init_strategy: str = "takase",
|
30 |
+
init_orthogonal: bool = False,
|
31 |
+
state_init: str = "like-init",
|
32 |
+
injection_type: str = "linear",
|
33 |
+
n_layers_in_recurrent_block: int = 4,
|
34 |
+
mean_recurrence: int = 32,
|
35 |
+
sampling_scheme: str = "poisson-lognormal-filling",
|
36 |
+
mean_backprop_depth: int = 8,
|
37 |
+
n_layers_in_prelude: int = 2,
|
38 |
+
n_layers_in_coda: int = 2,
|
39 |
+
qk_bias: bool = True,
|
40 |
+
activation_checkpoint_impl: str = "per-iteration",
|
41 |
+
rope_base: float = 50_000,
|
42 |
+
torch_dtype: str = "bfloat16",
|
43 |
+
transformers_version: str = "4.47.1",
|
44 |
+
**kwargs,
|
45 |
+
):
|
46 |
+
self.n_embd = n_embd
|
47 |
+
self.n_heads = n_heads
|
48 |
+
self.n_layers = n_layers
|
49 |
+
self.block_size = block_size
|
50 |
+
self.vocab_size = self.padded_vocab_size = vocab_size
|
51 |
+
self.padding_multiple = padding_multiple
|
52 |
+
self.tie_embeddings = tie_embeddings
|
53 |
+
self.intermediate_size = intermediate_size
|
54 |
+
self.bias = bias
|
55 |
+
self.architecture_class_name = architecture_class_name
|
56 |
+
self.block_class_name = block_class_name
|
57 |
+
self.norm_class_name = norm_class_name
|
58 |
+
self.norm_eps = norm_eps
|
59 |
+
self.mlp_class_name = mlp_class_name
|
60 |
+
self.nonlin_name = nonlin_name
|
61 |
+
self.init_strategy = init_strategy
|
62 |
+
self.init_orthogonal = init_orthogonal
|
63 |
+
self.state_init = state_init
|
64 |
+
self.injection_type = injection_type
|
65 |
+
self.n_layers_in_recurrent_block = n_layers_in_recurrent_block
|
66 |
+
self.mean_recurrence = mean_recurrence
|
67 |
+
self.sampling_scheme = sampling_scheme
|
68 |
+
self.mean_backprop_depth = mean_backprop_depth
|
69 |
+
self.n_layers_in_prelude = n_layers_in_prelude
|
70 |
+
self.n_layers_in_coda = n_layers_in_coda
|
71 |
+
self.qk_bias = qk_bias
|
72 |
+
self.activation_checkpoint_impl = activation_checkpoint_impl
|
73 |
+
self.rope_base = rope_base
|
74 |
+
self.torch_dtype = torch_dtype # Added from JSON
|
75 |
+
self.transformers_version = transformers_version # Added from JSON
|
76 |
+
# Derived
|
77 |
+
self.num_key_value_heads = n_heads
|
78 |
+
self.num_attention_heads = n_heads
|
79 |
+
self.head_dim = n_embd // n_heads
|
80 |
+
self.effective_expected_depth = (
|
81 |
+
self.n_layers_in_prelude + self.n_layers_in_coda + self.n_layers_in_recurrent_block * self.mean_recurrence
|
82 |
+
)
|
83 |
+
self.init_values = {
|
84 |
+
"std": sqrt(2 / (5 * self.n_embd)),
|
85 |
+
"out_proj": sqrt(2 / (5 * self.n_embd)) / sqrt(2 * self.effective_expected_depth),
|
86 |
+
"embedding": sqrt(2 / (5 * self.n_embd)),
|
87 |
+
"embed_scale": sqrt(self.n_embd),
|
88 |
+
}
|
89 |
+
|
90 |
+
super().__init__(
|
91 |
+
# pad_token_id=65509,
|
92 |
+
# bos_token_id=65504,
|
93 |
+
# eos_token_id=65505,
|
94 |
+
tie_word_embeddings=tie_embeddings,
|
95 |
+
**kwargs,
|
96 |
+
)
|
raven_modeling_minimal.py
ADDED
@@ -0,0 +1,972 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Minimal modeling.py file for HF compatibility and funny zero-shot experiments. Use only for inference."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import math
|
5 |
+
|
6 |
+
from torch import Tensor
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Optional, Union, Any
|
9 |
+
|
10 |
+
from .raven_config_minimal import RavenConfig
|
11 |
+
from transformers.cache_utils import Cache, DynamicCache
|
12 |
+
|
13 |
+
###################### Huggingface Glue code I ##################################################################
|
14 |
+
from transformers import PreTrainedModel
|
15 |
+
from transformers.utils import ModelOutput
|
16 |
+
from transformers.generation.utils import GenerateDecoderOnlyOutput
|
17 |
+
|
18 |
+
import torch.nn.functional as F
|
19 |
+
from transformers import GenerationConfig
|
20 |
+
|
21 |
+
|
22 |
+
class RavenPreTrainedModel(PreTrainedModel):
|
23 |
+
config_class = RavenConfig
|
24 |
+
base_model_prefix = "model"
|
25 |
+
supports_gradient_checkpointing = True
|
26 |
+
_no_split_modules = ["SandwichBlock"]
|
27 |
+
_skip_keys_device_placement = ["past_key_values"]
|
28 |
+
_supports_flash_attn_2 = True
|
29 |
+
_supports_sdpa = True
|
30 |
+
_supports_cache_class = True
|
31 |
+
_supports_quantized_cache = False
|
32 |
+
_supports_static_cache = False
|
33 |
+
|
34 |
+
def _init_weights(self, module):
|
35 |
+
print("Random Initialization not implemented.")
|
36 |
+
|
37 |
+
|
38 |
+
@dataclass
|
39 |
+
class CausalLMOutputRecurrentLatents(ModelOutput):
|
40 |
+
loss: Optional[torch.Tensor] = None
|
41 |
+
log_ppl: Optional[torch.Tensor] = None
|
42 |
+
logits: Optional[torch.Tensor] = None
|
43 |
+
past_key_values: Optional[Cache] = None
|
44 |
+
latent_states: Optional[torch.Tensor] = None
|
45 |
+
hidden_states: Optional[torch.Tensor] = None
|
46 |
+
attention_maps: Optional[dict[int, torch.Tensor]] = None
|
47 |
+
stats: Optional[dict] = None
|
48 |
+
|
49 |
+
|
50 |
+
###################### Minimal implementation from here ############################################################
|
51 |
+
|
52 |
+
|
53 |
+
class RMSNorm(torch.nn.Module):
|
54 |
+
"""Saner dtype handling and slightly better for fusion"""
|
55 |
+
|
56 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
57 |
+
super().__init__()
|
58 |
+
self.eps = eps
|
59 |
+
self.weight = torch.nn.Parameter(torch.ones(dim))
|
60 |
+
|
61 |
+
def _norm(self, x):
|
62 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
with torch.autocast(enabled=False, device_type=x.device.type):
|
66 |
+
return self._norm(x.float()).type_as(x) * self.weight
|
67 |
+
|
68 |
+
def reset_parameters(self) -> None:
|
69 |
+
torch.nn.init.ones_(self.weight)
|
70 |
+
|
71 |
+
|
72 |
+
class HuginnDynamicCache(DynamicCache):
|
73 |
+
def __init__(self, lookup_strategy: str = "full") -> None:
|
74 |
+
super().__init__()
|
75 |
+
self._seen_tokens = 0
|
76 |
+
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
|
77 |
+
self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
|
78 |
+
# structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
|
79 |
+
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
|
80 |
+
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
|
81 |
+
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
|
82 |
+
self.lookup_strategy = lookup_strategy
|
83 |
+
|
84 |
+
def update(
|
85 |
+
self,
|
86 |
+
key_states: torch.Tensor,
|
87 |
+
value_states: torch.Tensor,
|
88 |
+
step_idx: int,
|
89 |
+
lookup_strategy: Optional[str] = None,
|
90 |
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
91 |
+
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
|
92 |
+
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
|
93 |
+
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
|
94 |
+
if "compress-s" in self.lookup_strategy:
|
95 |
+
new_step_idx = (step_idx - 2) % compression_stage + 2
|
96 |
+
else:
|
97 |
+
new_step_idx = (step_idx - 2) // compression_stage + 2
|
98 |
+
# @ print(step_idx, new_step_idx, compression_stage)
|
99 |
+
step_idx = new_step_idx
|
100 |
+
# Init
|
101 |
+
if step_idx not in self.key_cache:
|
102 |
+
self.key_cache[step_idx] = {}
|
103 |
+
self.value_cache[step_idx] = {}
|
104 |
+
# Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
|
105 |
+
if step_idx == 0:
|
106 |
+
self._seen_tokens += key_states.shape[-2]
|
107 |
+
# Add entries to cache
|
108 |
+
for idx, entry in enumerate(key_states.unbind(dim=-2)):
|
109 |
+
if "compress-" not in self.lookup_strategy:
|
110 |
+
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
|
111 |
+
# print(f"Overwrote cache entry for step_idx {step_idx}") # likely the head
|
112 |
+
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
|
113 |
+
for idx, entry in enumerate(value_states.unbind(dim=-2)):
|
114 |
+
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
|
115 |
+
|
116 |
+
# Materialize past state based on lookup strategy:
|
117 |
+
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
|
118 |
+
# All entries are present, materialize cache as normal
|
119 |
+
return (
|
120 |
+
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
|
121 |
+
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
|
122 |
+
)
|
123 |
+
else: # some entries where not previously computed
|
124 |
+
# if lookup_strategy.startswith("latest"):
|
125 |
+
# latest_keys = []
|
126 |
+
# latest_values = []
|
127 |
+
# for token_pos in range(self._seen_tokens):
|
128 |
+
# # Find the latest step that has this token position
|
129 |
+
# max_step = max((s for s in range(step_idx + 1) if token_pos in self.key_cache[s]), default=None)
|
130 |
+
# if max_step is None:
|
131 |
+
# raise ValueError(f"No cache entry found for token position {token_pos}")
|
132 |
+
# latest_keys.append(self.key_cache[max_step][token_pos])
|
133 |
+
# latest_values.append(self.value_cache[max_step][token_pos])
|
134 |
+
# return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
135 |
+
if lookup_strategy.startswith("latest-m4"):
|
136 |
+
latest_keys = []
|
137 |
+
latest_values = []
|
138 |
+
for token_pos in range(self._seen_tokens):
|
139 |
+
# For steps >= 2, use modulo 4
|
140 |
+
if step_idx >= 2:
|
141 |
+
# Find valid steps for this token position
|
142 |
+
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
|
143 |
+
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
|
144 |
+
else:
|
145 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
146 |
+
if max_step is None:
|
147 |
+
raise ValueError(f"No cache entry found for token position {token_pos}")
|
148 |
+
latest_keys.append(self.key_cache[max_step][token_pos])
|
149 |
+
latest_values.append(self.value_cache[max_step][token_pos])
|
150 |
+
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
|
151 |
+
elif lookup_strategy.startswith("skip"):
|
152 |
+
existing_keys = []
|
153 |
+
existing_values = []
|
154 |
+
for token_pos in range(self._seen_tokens):
|
155 |
+
if token_pos in self.key_cache[step_idx]:
|
156 |
+
existing_keys.append(self.key_cache[step_idx][token_pos])
|
157 |
+
existing_values.append(self.value_cache[step_idx][token_pos])
|
158 |
+
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
|
159 |
+
elif lookup_strategy.startswith("randomized"): # sanity check
|
160 |
+
rand_keys = []
|
161 |
+
rand_values = []
|
162 |
+
for token_pos in range(self._seen_tokens):
|
163 |
+
if step_idx < 2: # For prelude steps
|
164 |
+
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
|
165 |
+
else: # Get all steps from same block position
|
166 |
+
curr_modulo = (step_idx - 2) % 4 + 2
|
167 |
+
valid_steps = [
|
168 |
+
s
|
169 |
+
for s in range(2, step_idx + 1)
|
170 |
+
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
|
171 |
+
]
|
172 |
+
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
|
173 |
+
rand_keys.append(self.key_cache[max_step][token_pos])
|
174 |
+
rand_values.append(self.value_cache[max_step][token_pos])
|
175 |
+
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
|
176 |
+
else:
|
177 |
+
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
|
178 |
+
|
179 |
+
def reset(self) -> None:
|
180 |
+
"""Reset the cache state."""
|
181 |
+
self._seen_tokens = 0
|
182 |
+
self.key_cache.clear()
|
183 |
+
self.value_cache.clear()
|
184 |
+
|
185 |
+
def get_seq_length(self, step_idx: int = 0) -> int:
|
186 |
+
return self._seen_tokens
|
187 |
+
|
188 |
+
def get_memory_usage(self) -> float:
|
189 |
+
total_bytes = 0
|
190 |
+
# For each recurrent step/layer index
|
191 |
+
for step_idx in self.key_cache:
|
192 |
+
# Get the sequence cache for this step
|
193 |
+
key_seq_cache = self.key_cache[step_idx]
|
194 |
+
for seq_idx in key_seq_cache:
|
195 |
+
key_tensor = key_seq_cache[seq_idx]
|
196 |
+
# Add memory for of key tensors, assuming value is the same
|
197 |
+
total_bytes += key_tensor.nelement() * key_tensor.element_size()
|
198 |
+
return total_bytes * 2 / (1024 * 1024)
|
199 |
+
|
200 |
+
|
201 |
+
class CausalSelfAttention(torch.nn.Module):
|
202 |
+
def __init__(self, config: RavenConfig) -> None:
|
203 |
+
super().__init__()
|
204 |
+
self.config = config
|
205 |
+
self.n_head = config.num_attention_heads
|
206 |
+
self.n_kv_heads = config.num_key_value_heads
|
207 |
+
self.head_dim = config.n_embd // self.n_head
|
208 |
+
|
209 |
+
shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
|
210 |
+
self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
|
211 |
+
self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
|
212 |
+
if config.qk_bias:
|
213 |
+
self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
|
214 |
+
self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)
|
215 |
+
|
216 |
+
def forward(
|
217 |
+
self,
|
218 |
+
x: Tensor,
|
219 |
+
freqs_cis: Tensor,
|
220 |
+
step_idx: int,
|
221 |
+
mask: Optional[Tensor] = None,
|
222 |
+
past_key_values: Optional[Cache] = None,
|
223 |
+
return_attn: bool = False,
|
224 |
+
) -> tuple[Tensor, Optional[Tensor]]:
|
225 |
+
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
|
226 |
+
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
|
227 |
+
q = q.view(B, S, self.n_head, self.head_dim)
|
228 |
+
k = k.view(B, S, self.n_kv_heads, self.head_dim)
|
229 |
+
v = v.view(B, S, self.n_kv_heads, self.head_dim)
|
230 |
+
# bias?
|
231 |
+
if self.config.qk_bias:
|
232 |
+
q_bias, k_bias = self.qk_bias.split(1, dim=0)
|
233 |
+
q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
|
234 |
+
# apply rotary
|
235 |
+
q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)
|
236 |
+
|
237 |
+
q = q.transpose(1, 2) # (B, nh, S, hs)
|
238 |
+
k = k.transpose(1, 2)
|
239 |
+
v = v.transpose(1, 2)
|
240 |
+
|
241 |
+
if past_key_values is not None:
|
242 |
+
k, v = past_key_values.update(k, v, step_idx)
|
243 |
+
|
244 |
+
if return_attn:
|
245 |
+
y, attention_map = self.compute_eager_sdpa(q, k, v, attn_mask=mask)
|
246 |
+
else:
|
247 |
+
y = torch.nn.functional.scaled_dot_product_attention(
|
248 |
+
q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=q.shape[2] > 1
|
249 |
+
)
|
250 |
+
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
|
251 |
+
return self.proj(y), attention_map if return_attn else None
|
252 |
+
|
253 |
+
def compute_eager_sdpa(self, q, k, v, attn_mask):
|
254 |
+
scale = 1.0 / math.sqrt(self.head_dim)
|
255 |
+
scores = torch.matmul(q, k.transpose(-2, -1)) * scale
|
256 |
+
|
257 |
+
if attn_mask is not None:
|
258 |
+
scores = scores + attn_mask
|
259 |
+
if q.shape[2] > 1:
|
260 |
+
causal_mask = torch.triu(torch.ones(q.shape[2], q.shape[2]), diagonal=1).bool()
|
261 |
+
scores.masked_fill_(causal_mask.to(scores.device), float("-inf"))
|
262 |
+
|
263 |
+
attention_weights = torch.nn.functional.softmax(scores, dim=-1)
|
264 |
+
y = torch.matmul(attention_weights, v)
|
265 |
+
return y, attention_weights.max(dim=1)[0]
|
266 |
+
|
267 |
+
|
268 |
+
class GatedMLP(torch.nn.Module):
|
269 |
+
def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
|
270 |
+
super().__init__()
|
271 |
+
in_features = config.n_embd if in_features == 0 else in_features
|
272 |
+
self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)
|
273 |
+
|
274 |
+
self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
|
275 |
+
self.nonlin = torch.nn.SiLU()
|
276 |
+
|
277 |
+
def forward(self, x: Tensor) -> Tensor:
|
278 |
+
# modified to single FC layer to improve parallelism
|
279 |
+
x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
|
280 |
+
x = self.nonlin(x_fc_1) * x_fc_2
|
281 |
+
return self.proj(x)
|
282 |
+
|
283 |
+
|
284 |
+
class SandwichBlock(torch.nn.Module):
|
285 |
+
expanded = False
|
286 |
+
|
287 |
+
def __init__(self, config: RavenConfig, layer_id: int) -> None:
|
288 |
+
super().__init__()
|
289 |
+
self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
290 |
+
self.attn = CausalSelfAttention(config)
|
291 |
+
self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
292 |
+
self.mlp = GatedMLP(config)
|
293 |
+
self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
294 |
+
self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
|
295 |
+
self.layer_id = layer_id
|
296 |
+
|
297 |
+
def forward(
|
298 |
+
self,
|
299 |
+
x: Tensor,
|
300 |
+
freqs_cis: Tensor,
|
301 |
+
step_idx: int,
|
302 |
+
mask: Optional[Tensor] = None,
|
303 |
+
past_key_values: Optional[Cache] = None,
|
304 |
+
return_attn: bool = False,
|
305 |
+
) -> tuple[Tensor, Optional[Tensor]]:
|
306 |
+
attn_out, attn_map = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values, return_attn)
|
307 |
+
x = self.norm_2(attn_out + x)
|
308 |
+
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
|
309 |
+
return x, attn_map
|
310 |
+
|
311 |
+
|
312 |
+
class RavenForCausalLM(RavenPreTrainedModel):
|
313 |
+
def __init__(
|
314 |
+
self,
|
315 |
+
config: RavenConfig,
|
316 |
+
) -> None:
|
317 |
+
super().__init__(config)
|
318 |
+
self.config = config
|
319 |
+
|
320 |
+
# Transformer layers
|
321 |
+
prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
|
322 |
+
adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
|
323 |
+
core_block = torch.nn.ModuleList(
|
324 |
+
SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
|
325 |
+
for i in range(config.n_layers_in_recurrent_block)
|
326 |
+
)
|
327 |
+
o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
|
328 |
+
coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))
|
329 |
+
|
330 |
+
self.transformer = torch.nn.ModuleDict(
|
331 |
+
dict(
|
332 |
+
wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
|
333 |
+
prelude=prelude,
|
334 |
+
adapter=adapter,
|
335 |
+
core_block=core_block,
|
336 |
+
coda=coda,
|
337 |
+
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
|
338 |
+
)
|
339 |
+
)
|
340 |
+
self.emb_scale = config.init_values["embed_scale"]
|
341 |
+
# Head
|
342 |
+
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
|
343 |
+
if self.config.tie_embeddings:
|
344 |
+
self.lm_head.weight = self.transformer.wte.weight
|
345 |
+
# rope
|
346 |
+
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
|
347 |
+
|
348 |
+
def _precompute_freqs_cis(self):
|
349 |
+
# can actually be a buffer now, and remains in fp32! (at least in the settings I tested)
|
350 |
+
freqs_cis = precompute_freqs_cis(
|
351 |
+
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
|
352 |
+
)
|
353 |
+
return freqs_cis
|
354 |
+
|
355 |
+
def forward(
|
356 |
+
self,
|
357 |
+
input_ids: torch.Tensor,
|
358 |
+
input_embeds: Optional[torch.Tensor] = None,
|
359 |
+
input_states: Optional[torch.Tensor] = None,
|
360 |
+
attention_mask: Optional[torch.Tensor] = None,
|
361 |
+
position_ids: Optional[torch.Tensor] = None,
|
362 |
+
labels: Optional[torch.Tensor] = None,
|
363 |
+
num_steps: Optional[torch.Tensor] = None,
|
364 |
+
past_key_values: Optional[Cache] = None,
|
365 |
+
output_details: dict = {
|
366 |
+
"return_logits": True,
|
367 |
+
"return_latents": True,
|
368 |
+
"return_attention": False,
|
369 |
+
"return_head": False,
|
370 |
+
"return_stats": True,
|
371 |
+
},
|
372 |
+
use_cache: bool = False,
|
373 |
+
cache_position: Optional[torch.Tensor] = None,
|
374 |
+
**kwargs,
|
375 |
+
) -> CausalLMOutputRecurrentLatents:
|
376 |
+
# Support multiple position formats:
|
377 |
+
if position_ids is None and cache_position is None:
|
378 |
+
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
|
379 |
+
elif position_ids is not None:
|
380 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
381 |
+
elif cache_position is not None:
|
382 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
383 |
+
|
384 |
+
if input_embeds is None:
|
385 |
+
input_embeds = self.transformer.wte(input_ids)
|
386 |
+
|
387 |
+
if self.emb_scale != 1:
|
388 |
+
input_embeds = input_embeds * self.emb_scale # type: ignore
|
389 |
+
|
390 |
+
if use_cache and past_key_values is None:
|
391 |
+
past_key_values = HuginnDynamicCache()
|
392 |
+
attn_maps = {}
|
393 |
+
return_attn = output_details["return_attention"]
|
394 |
+
|
395 |
+
# Non-recurrent prelude
|
396 |
+
for block_idx, block in enumerate(self.transformer.prelude):
|
397 |
+
input_embeds, attn_map = block(
|
398 |
+
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
|
399 |
+
)
|
400 |
+
attn_maps[block_idx] = attn_map
|
401 |
+
|
402 |
+
# Main recurrence
|
403 |
+
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx, attn_maps = self.iterate_forward(
|
404 |
+
input_embeds, # type: ignore
|
405 |
+
input_states,
|
406 |
+
freqs_cis,
|
407 |
+
block_idx,
|
408 |
+
attention_mask,
|
409 |
+
past_key_values,
|
410 |
+
num_steps,
|
411 |
+
attn_maps,
|
412 |
+
)
|
413 |
+
latent_states = x.clone().detach()
|
414 |
+
|
415 |
+
# Coda layers
|
416 |
+
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
417 |
+
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values, return_attn)
|
418 |
+
attn_maps[-block_idx] = attn_map
|
419 |
+
x = self.transformer.ln_f(x)
|
420 |
+
|
421 |
+
# Prediction head, assuming labels really are labels and not equal to input_ids
|
422 |
+
if labels is not None:
|
423 |
+
logits = self.lm_head(x).float()
|
424 |
+
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
|
425 |
+
log_ppl = loss.clone().detach()
|
426 |
+
else:
|
427 |
+
logits = self.lm_head(x).float()
|
428 |
+
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
|
429 |
+
|
430 |
+
return CausalLMOutputRecurrentLatents(
|
431 |
+
loss=loss,
|
432 |
+
log_ppl=log_ppl,
|
433 |
+
logits=logits if output_details["return_logits"] else None,
|
434 |
+
past_key_values=past_key_values,
|
435 |
+
hidden_states=x if output_details["return_head"] else None,
|
436 |
+
latent_states=latent_states if output_details["return_latents"] else None,
|
437 |
+
attention_maps=attn_maps if output_details["return_attention"] else None, # type: ignore
|
438 |
+
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
|
439 |
+
if output_details["return_stats"]
|
440 |
+
else None,
|
441 |
+
)
|
442 |
+
|
443 |
+
@torch._dynamo.disable(recursive=False) # type: ignore
|
444 |
+
def iterate_forward(
|
445 |
+
self,
|
446 |
+
input_embeds,
|
447 |
+
input_states,
|
448 |
+
freqs_cis,
|
449 |
+
block_idx,
|
450 |
+
mask,
|
451 |
+
past_key_values: Optional[Cache] = None,
|
452 |
+
num_steps: Optional[torch.Tensor] = None,
|
453 |
+
attn_maps: dict = {},
|
454 |
+
):
|
455 |
+
x = xk = self.initialize_state(input_embeds) if input_states is None else input_states.clone()
|
456 |
+
if num_steps is None:
|
457 |
+
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
|
458 |
+
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
|
459 |
+
num_steps_no_grad, num_steps_with_grad = num_steps
|
460 |
+
else:
|
461 |
+
num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0)
|
462 |
+
|
463 |
+
with torch.no_grad():
|
464 |
+
# ultra annoying in ddp due to
|
465 |
+
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
|
466 |
+
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
|
467 |
+
# and all parameters are always used
|
468 |
+
for step in range(num_steps_no_grad):
|
469 |
+
xk = x
|
470 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
471 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
472 |
+
)
|
473 |
+
|
474 |
+
for step in range(num_steps_with_grad):
|
475 |
+
xk = x
|
476 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
477 |
+
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, attn_maps
|
478 |
+
)
|
479 |
+
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx, attn_maps
|
480 |
+
|
481 |
+
def core_block_forward(
|
482 |
+
self,
|
483 |
+
x,
|
484 |
+
input_embeds,
|
485 |
+
freqs_cis,
|
486 |
+
mask,
|
487 |
+
past_key_values,
|
488 |
+
block_idx: Union[torch.Tensor, int],
|
489 |
+
attn_maps: dict = {},
|
490 |
+
):
|
491 |
+
x = self.transformer.adapter(torch.cat([x, input_embeds], dim=-1))
|
492 |
+
for idx, block in enumerate(self.transformer.core_block, start=1):
|
493 |
+
x, attn_map = block(x, freqs_cis, block_idx + idx, mask, past_key_values, return_attn=len(attn_maps) > 0)
|
494 |
+
attn_maps[block_idx + idx] = attn_map
|
495 |
+
return x, block_idx + idx, attn_maps
|
496 |
+
|
497 |
+
@torch.no_grad()
|
498 |
+
def iterate_one_step(
|
499 |
+
self,
|
500 |
+
input_embeds,
|
501 |
+
input_states,
|
502 |
+
position_ids: Optional[torch.Tensor] = None,
|
503 |
+
cache_position: Optional[torch.Tensor] = None,
|
504 |
+
block_idx: Union[torch.Tensor, int] = 0,
|
505 |
+
attention_mask: Optional[Tensor] = None,
|
506 |
+
past_key_values: Optional[Cache] = None,
|
507 |
+
attn_maps: dict = {},
|
508 |
+
):
|
509 |
+
if position_ids is None and cache_position is None:
|
510 |
+
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
|
511 |
+
elif position_ids is not None:
|
512 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
513 |
+
elif cache_position is not None:
|
514 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
515 |
+
x, block_idx, attn_maps = self.core_block_forward(
|
516 |
+
input_states, input_embeds, freqs_cis, attention_mask, past_key_values, block_idx, attn_maps
|
517 |
+
)
|
518 |
+
return x, block_idx, attn_maps
|
519 |
+
|
520 |
+
def predict_from_latents(
|
521 |
+
self,
|
522 |
+
latents,
|
523 |
+
attention_mask: Optional[torch.Tensor] = None,
|
524 |
+
position_ids: Optional[torch.Tensor] = None,
|
525 |
+
cache_position: Optional[torch.Tensor] = None,
|
526 |
+
past_key_values: Optional[Cache] = None,
|
527 |
+
return_attn: bool = False,
|
528 |
+
attn_maps: dict = {},
|
529 |
+
):
|
530 |
+
if position_ids is None and cache_position is None:
|
531 |
+
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
|
532 |
+
elif position_ids is not None:
|
533 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
534 |
+
elif cache_position is not None:
|
535 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
536 |
+
x = self.transformer.ln_f(latents)
|
537 |
+
# Coda layers
|
538 |
+
for block_idx, block in enumerate(self.transformer.coda, start=1):
|
539 |
+
x, attn_map = block(x, freqs_cis, -block_idx, attention_mask, past_key_values)
|
540 |
+
attn_maps[block_idx] = attn_map
|
541 |
+
x = self.transformer.ln_f(x)
|
542 |
+
|
543 |
+
logits = self.lm_head(x).float()
|
544 |
+
|
545 |
+
return CausalLMOutputRecurrentLatents(
|
546 |
+
loss=torch.as_tensor(0.0),
|
547 |
+
log_ppl=torch.as_tensor(0.0),
|
548 |
+
logits=logits,
|
549 |
+
past_key_values=past_key_values,
|
550 |
+
attention_maps=attn_maps if len(attn_maps) > 0 else None,
|
551 |
+
)
|
552 |
+
|
553 |
+
def embed_inputs(
|
554 |
+
self,
|
555 |
+
input_ids: torch.Tensor,
|
556 |
+
attention_mask: Optional[torch.Tensor] = None,
|
557 |
+
position_ids: Optional[torch.Tensor] = None,
|
558 |
+
past_key_values: Optional[Cache] = None,
|
559 |
+
use_cache: bool = False,
|
560 |
+
cache_position: Optional[torch.Tensor] = None,
|
561 |
+
return_attn: bool = False,
|
562 |
+
**kwargs,
|
563 |
+
) -> tuple[torch.Tensor, int, dict[int, Tensor]]:
|
564 |
+
# Support multiple position formats:
|
565 |
+
if position_ids is None and cache_position is None:
|
566 |
+
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
|
567 |
+
elif position_ids is not None:
|
568 |
+
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
|
569 |
+
elif cache_position is not None:
|
570 |
+
freqs_cis = self.freqs_cis[:, cache_position]
|
571 |
+
|
572 |
+
input_embeds = self.transformer.wte(input_ids)
|
573 |
+
|
574 |
+
if self.emb_scale != 1:
|
575 |
+
input_embeds = input_embeds * self.emb_scale # type: ignore
|
576 |
+
|
577 |
+
if use_cache and past_key_values is None:
|
578 |
+
past_key_values = HuginnDynamicCache()
|
579 |
+
|
580 |
+
# Non-recurrent prelude
|
581 |
+
attn_maps = {}
|
582 |
+
for block_idx, block in enumerate(self.transformer.prelude):
|
583 |
+
input_embeds, attn_maps = block(
|
584 |
+
input_embeds, freqs_cis, block_idx, attention_mask, past_key_values, return_attn
|
585 |
+
)
|
586 |
+
return input_embeds, block_idx, attn_maps
|
587 |
+
|
588 |
+
@torch._dynamo.disable(recursive=False) # type: ignore
|
589 |
+
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
|
590 |
+
"""Outputs are long tensors so that they can be passed through compiled functions"""
|
591 |
+
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
|
592 |
+
s = self.config.mean_backprop_depth
|
593 |
+
if self.training:
|
594 |
+
sigma = 0.5
|
595 |
+
mu = math.log(t + s) - (sigma**2 / 2)
|
596 |
+
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
|
597 |
+
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
|
598 |
+
n = torch.clamp(p - s, min=0)
|
599 |
+
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
|
600 |
+
else:
|
601 |
+
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
|
602 |
+
|
603 |
+
return n.to(dtype=torch.long), k.to(dtype=torch.long)
|
604 |
+
|
605 |
+
def initialize_state(self, input_embeds, deterministic: bool = False):
|
606 |
+
x = torch.randn_like(input_embeds)
|
607 |
+
std = self.config.init_values["std"]
|
608 |
+
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
|
609 |
+
if self.emb_scale != 1:
|
610 |
+
x = x * self.emb_scale
|
611 |
+
return x if not deterministic else x.zero_()
|
612 |
+
|
613 |
+
def prepare_inputs_for_generation(
|
614 |
+
self,
|
615 |
+
input_ids: torch.LongTensor,
|
616 |
+
past_key_values: Optional[Cache] = None,
|
617 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
618 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
619 |
+
cache_position: Optional[torch.LongTensor] = None,
|
620 |
+
**kwargs,
|
621 |
+
):
|
622 |
+
model_inputs = {}
|
623 |
+
model_inputs["cache_position"] = cache_position
|
624 |
+
current_input_length = input_ids.shape[1]
|
625 |
+
if past_key_values is not None:
|
626 |
+
if type(past_key_values) == DynamicCache:
|
627 |
+
# Need to use custom cache, detect and replace HF dynamic cache if generate injects it
|
628 |
+
assert past_key_values.get_seq_length() == 0
|
629 |
+
past_key_values = HuginnDynamicCache()
|
630 |
+
model_inputs["past_key_values"] = past_key_values if kwargs["use_cache"] else None
|
631 |
+
input_ids = input_ids[:, cache_position] # type: ignore
|
632 |
+
model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)
|
633 |
+
|
634 |
+
if cache_position is None:
|
635 |
+
position_ids = torch.arange(current_input_length)[None, :].to(input_ids.device)
|
636 |
+
model_inputs["position_ids"] = position_ids[:, -current_input_length:].clone(
|
637 |
+
memory_format=torch.contiguous_format
|
638 |
+
) # some form of position_ids is a critical argument for the model to correctly apply rope!
|
639 |
+
|
640 |
+
# forward all other entries
|
641 |
+
for key, value in kwargs.items():
|
642 |
+
if key not in model_inputs:
|
643 |
+
model_inputs[key] = value
|
644 |
+
return model_inputs
|
645 |
+
|
646 |
+
@torch.no_grad()
|
647 |
+
def generate_minimal(
|
648 |
+
self,
|
649 |
+
input_ids: torch.LongTensor,
|
650 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
651 |
+
tokenizer=None,
|
652 |
+
streamer=None,
|
653 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
654 |
+
cache_kwargs: dict = {},
|
655 |
+
**model_kwargs,
|
656 |
+
) -> Union[torch.Tensor, dict[str, Any]]:
|
657 |
+
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
658 |
+
# Setup
|
659 |
+
if generation_config is None:
|
660 |
+
generation_config: GenerationConfig = self.generation_config # type: ignore
|
661 |
+
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
|
662 |
+
model_kwargs["use_cache"] = True
|
663 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
664 |
+
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
|
665 |
+
if continuous_compute:
|
666 |
+
embedded_inputs, _, _ = self.embed_inputs(input_ids)
|
667 |
+
model_kwargs["input_states"] = self.initialize_state(embedded_inputs)
|
668 |
+
# Generate tokens
|
669 |
+
for _ in range(generation_config.max_length - input_ids.shape[1]):
|
670 |
+
# Forward pass
|
671 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
672 |
+
outputs = self(**model_inputs)
|
673 |
+
next_token_logits = outputs.logits[0, -1, :]
|
674 |
+
if continuous_compute:
|
675 |
+
current_last_latent = outputs.latent_states[:, -1:, :]
|
676 |
+
|
677 |
+
# Sample or select next token
|
678 |
+
if generation_config.do_sample:
|
679 |
+
if generation_config.temperature:
|
680 |
+
next_token_logits = next_token_logits / generation_config.temperature
|
681 |
+
|
682 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
683 |
+
|
684 |
+
# Apply top_k
|
685 |
+
if generation_config.top_k:
|
686 |
+
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
|
687 |
+
probs[probs < top_k_probs[-1]] = 0
|
688 |
+
# Apply top_p
|
689 |
+
if generation_config.top_p:
|
690 |
+
sorted_probs = torch.sort(probs, descending=True)[0]
|
691 |
+
cumsum = torch.cumsum(sorted_probs, dim=-1)
|
692 |
+
probs[cumsum > generation_config.top_p] = 0
|
693 |
+
# Apply min_p
|
694 |
+
if generation_config.min_p:
|
695 |
+
probs[probs < generation_config.min_p * probs.max()] = 0
|
696 |
+
|
697 |
+
probs = probs / probs.sum()
|
698 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
699 |
+
else:
|
700 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
701 |
+
|
702 |
+
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
|
703 |
+
|
704 |
+
if streamer:
|
705 |
+
streamer.put(next_token.cpu())
|
706 |
+
|
707 |
+
# Update model kwargs
|
708 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
709 |
+
if continuous_compute:
|
710 |
+
model_kwargs["input_states"] = current_last_latent
|
711 |
+
|
712 |
+
# Check if we hit a stop token
|
713 |
+
if stop_tokens is not None and next_token in stop_tokens:
|
714 |
+
break
|
715 |
+
|
716 |
+
if streamer:
|
717 |
+
streamer.end()
|
718 |
+
|
719 |
+
if generation_config.return_dict_in_generate:
|
720 |
+
return GenerateDecoderOnlyOutput(
|
721 |
+
sequences=input_ids,
|
722 |
+
scores=None,
|
723 |
+
logits=None,
|
724 |
+
attentions=None,
|
725 |
+
hidden_states=None,
|
726 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
727 |
+
)
|
728 |
+
return input_ids
|
729 |
+
|
730 |
+
@torch.no_grad()
|
731 |
+
def generate_with_adaptive_compute(
|
732 |
+
self,
|
733 |
+
input_ids: torch.LongTensor,
|
734 |
+
generation_config: Optional[GenerationConfig] = None, # type: ignore
|
735 |
+
tokenizer=None,
|
736 |
+
streamer=None,
|
737 |
+
continuous_compute=False, # warm-start state / continuous CoT
|
738 |
+
latent_dampening=False,
|
739 |
+
criterion="entropy-diff",
|
740 |
+
exit_threshold: Union[str, float, int] = "auto",
|
741 |
+
cache_kwargs: dict = {},
|
742 |
+
**model_kwargs,
|
743 |
+
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
|
744 |
+
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
|
745 |
+
# Setup
|
746 |
+
if generation_config is None:
|
747 |
+
generation_config: GenerationConfig = self.generation_config # type: ignore
|
748 |
+
model_kwargs["past_key_values"] = HuginnDynamicCache(**cache_kwargs)
|
749 |
+
model_kwargs["use_cache"] = True
|
750 |
+
model_kwargs = self._get_initial_cache_position(input_ids, model_kwargs)
|
751 |
+
stop_tokens = self._get_stops(generation_config, tokenizer).to(input_ids.device)
|
752 |
+
if continuous_compute:
|
753 |
+
embedded_inputs, _, _ = self.embed_inputs(input_ids)
|
754 |
+
current_last_latent = self.initialize_state(embedded_inputs)
|
755 |
+
compute_steps = []
|
756 |
+
|
757 |
+
# Generate tokens
|
758 |
+
for step in range(generation_config.max_length - input_ids.shape[1]):
|
759 |
+
# Adaptive compute forward
|
760 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
761 |
+
aux_inputs = {
|
762 |
+
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
|
763 |
+
}
|
764 |
+
embedded_inputs, block_idx, _ = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
|
765 |
+
if not continuous_compute:
|
766 |
+
current_latents = self.initialize_state(embedded_inputs, deterministic=False)
|
767 |
+
else:
|
768 |
+
current_latents = current_last_latent
|
769 |
+
|
770 |
+
# Prep criterions:
|
771 |
+
if criterion == "entropy-diff":
|
772 |
+
entropy = torch.tensor(100.0, device=input_ids.device)
|
773 |
+
exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
|
774 |
+
elif criterion in ["latent-diff", "none"]:
|
775 |
+
exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
|
776 |
+
elif "kl" in criterion:
|
777 |
+
V = self.config.padded_vocab_size
|
778 |
+
log_probs = (1 / V * torch.ones(V, device=input_ids.device)).log()
|
779 |
+
if criterion == "minp-kl":
|
780 |
+
exit_threshold = 1e-6 if exit_threshold == "auto" else float(exit_threshold)
|
781 |
+
else:
|
782 |
+
exit_threshold = 5e-4 if exit_threshold == "auto" else float(exit_threshold)
|
783 |
+
elif criterion == "argmax-stability":
|
784 |
+
stable_for_n_steps = 0
|
785 |
+
current_argmax = torch.tensor(-1, dtype=torch.long, device=input_ids.device)
|
786 |
+
exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
|
787 |
+
else:
|
788 |
+
raise ValueError("Invalid adaptive compute strategy.")
|
789 |
+
|
790 |
+
all_latents = []
|
791 |
+
exit_values = []
|
792 |
+
for compute_step in range(model_inputs["num_steps"]):
|
793 |
+
prev_latents = current_latents.clone()
|
794 |
+
current_latents, block_idx, _ = self.iterate_one_step(
|
795 |
+
embedded_inputs, current_latents, block_idx=block_idx, **aux_inputs
|
796 |
+
)
|
797 |
+
all_latents.append(current_latents if latent_dampening else None)
|
798 |
+
if step > 0: # do not exit in prefill:
|
799 |
+
if criterion == "entropy-diff":
|
800 |
+
prev_entropy = entropy.clone()
|
801 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
802 |
+
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
803 |
+
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1).mean()
|
804 |
+
entropy_diff = (entropy - prev_entropy).abs()
|
805 |
+
exit_values.append(entropy_diff.item())
|
806 |
+
if entropy_diff < exit_threshold:
|
807 |
+
break
|
808 |
+
elif criterion == "latent-diff":
|
809 |
+
norm_diff = (prev_latents - current_latents).norm() / current_latents.norm()
|
810 |
+
exit_values.append(norm_diff.item())
|
811 |
+
if norm_diff < exit_threshold:
|
812 |
+
break
|
813 |
+
elif criterion == "kl":
|
814 |
+
prev_log_probs = log_probs.clone()
|
815 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
816 |
+
log_probs = F.log_softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
817 |
+
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
818 |
+
exit_values.append(kl.item())
|
819 |
+
if kl < exit_threshold:
|
820 |
+
break
|
821 |
+
elif criterion == "minp-kl":
|
822 |
+
prev_log_probs = log_probs.clone()
|
823 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
824 |
+
probs = F.softmax(outputs.logits[:, -1, :], dim=-1) # type: ignore
|
825 |
+
probs[probs < 0.1 * probs.max()] = 1 / V
|
826 |
+
probs = probs / probs.sum()
|
827 |
+
log_probs = probs.log()
|
828 |
+
kl = F.kl_div(log_probs, prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
|
829 |
+
exit_values.append(kl.item())
|
830 |
+
if kl < exit_threshold:
|
831 |
+
break
|
832 |
+
elif criterion == "argmax-stability":
|
833 |
+
prev_argmax = current_argmax.clone()
|
834 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
835 |
+
current_argmax = outputs.logits[0, -1, :].argmax(dim=-1) # type: ignore
|
836 |
+
if current_argmax == prev_argmax:
|
837 |
+
stable_for_n_steps += 1
|
838 |
+
else:
|
839 |
+
stable_for_n_steps = 0
|
840 |
+
exit_values.append(stable_for_n_steps)
|
841 |
+
if stable_for_n_steps >= exit_threshold:
|
842 |
+
break
|
843 |
+
elif criterion == "none":
|
844 |
+
pass
|
845 |
+
|
846 |
+
else:
|
847 |
+
if not latent_dampening:
|
848 |
+
outputs = self.predict_from_latents(current_latents, **aux_inputs)
|
849 |
+
else:
|
850 |
+
dampened_latents = torch.sum(torch.cat(all_latents, dim=0), dim=0, keepdim=True)
|
851 |
+
outputs = self.predict_from_latents(dampened_latents, **aux_inputs)
|
852 |
+
compute_steps.append([compute_step + 1, exit_values])
|
853 |
+
|
854 |
+
next_token_logits = outputs.logits[0, -1, :] # type: ignore
|
855 |
+
if continuous_compute: # Save last latent
|
856 |
+
current_last_latent = current_latents[:, -1:, :]
|
857 |
+
|
858 |
+
# Sample or select next token
|
859 |
+
if generation_config.do_sample:
|
860 |
+
if generation_config.temperature:
|
861 |
+
next_token_logits = next_token_logits / generation_config.temperature
|
862 |
+
|
863 |
+
probs = F.softmax(next_token_logits, dim=-1)
|
864 |
+
# Apply top_k
|
865 |
+
if generation_config.top_k:
|
866 |
+
top_k_probs, _ = torch.topk(probs, generation_config.top_k)
|
867 |
+
probs[probs < top_k_probs[-1]] = 0
|
868 |
+
# Apply top_p
|
869 |
+
if generation_config.top_p:
|
870 |
+
sorted_probs = torch.sort(probs, descending=True)[0]
|
871 |
+
cumsum = torch.cumsum(sorted_probs, dim=-1)
|
872 |
+
probs[cumsum > generation_config.top_p] = 0
|
873 |
+
# Apply min_p
|
874 |
+
if generation_config.min_p:
|
875 |
+
probs[probs < generation_config.min_p * probs.max()] = 0
|
876 |
+
|
877 |
+
probs = probs / probs.sum()
|
878 |
+
next_token = torch.multinomial(probs, num_samples=1)
|
879 |
+
else:
|
880 |
+
next_token = torch.argmax(next_token_logits, dim=-1, keepdim=True)
|
881 |
+
|
882 |
+
input_ids = torch.cat([input_ids, next_token[None, :]], dim=-1) # type: ignore
|
883 |
+
|
884 |
+
if streamer:
|
885 |
+
streamer.put(next_token.cpu())
|
886 |
+
|
887 |
+
# Update model kwargs
|
888 |
+
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
|
889 |
+
|
890 |
+
# Check if we hit a stop token
|
891 |
+
if stop_tokens is not None and next_token in stop_tokens:
|
892 |
+
break
|
893 |
+
|
894 |
+
if streamer:
|
895 |
+
streamer.end()
|
896 |
+
|
897 |
+
if generation_config.return_dict_in_generate:
|
898 |
+
return GenerateDecoderOnlyOutput(
|
899 |
+
sequences=input_ids,
|
900 |
+
scores=compute_steps, # type: ignore
|
901 |
+
logits=None,
|
902 |
+
attentions=None,
|
903 |
+
hidden_states=None,
|
904 |
+
past_key_values=model_kwargs.get("past_key_values"),
|
905 |
+
)
|
906 |
+
return input_ids
|
907 |
+
|
908 |
+
def _get_stops(self, generation_config, tokenizer):
|
909 |
+
stop_tokens = set()
|
910 |
+
if generation_config.eos_token_id is not None:
|
911 |
+
stop_tokens.add(generation_config.eos_token_id)
|
912 |
+
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
|
913 |
+
for s in generation_config.stop_strings:
|
914 |
+
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
|
915 |
+
stop_tokens.add(token_id)
|
916 |
+
return torch.tensor(list(stop_tokens))
|
917 |
+
|
918 |
+
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
|
919 |
+
probs = torch.softmax(logits.float(), dim=-1)
|
920 |
+
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
|
921 |
+
residual_diff = (x - latent_states).norm(dim=-1)
|
922 |
+
rel_residual = residual_diff / latent_states.norm(dim=-1)
|
923 |
+
stats = {
|
924 |
+
"entropy": prob_entropy,
|
925 |
+
"residual_diff": residual_diff,
|
926 |
+
"rel_residual": rel_residual,
|
927 |
+
"num_steps_no_grad": num_steps_no_grad,
|
928 |
+
"num_steps_with_grad": num_steps_with_grad,
|
929 |
+
}
|
930 |
+
return stats
|
931 |
+
|
932 |
+
|
933 |
+
#################################### Utils #######################################################################
|
934 |
+
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
|
935 |
+
with torch.autocast("cuda", enabled=False):
|
936 |
+
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
|
937 |
+
t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
|
938 |
+
freqs = torch.outer(t, inv_freqs).float()
|
939 |
+
return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
|
940 |
+
# equivalent to
|
941 |
+
# freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
|
942 |
+
# cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
|
943 |
+
|
944 |
+
|
945 |
+
def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
946 |
+
with torch.autocast("cuda", enabled=False):
|
947 |
+
qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float() # cast to float32 for smooth skin
|
948 |
+
rotated_qk_r2 = torch.stack(
|
949 |
+
[
|
950 |
+
qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
|
951 |
+
qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
|
952 |
+
],
|
953 |
+
-1,
|
954 |
+
).flatten(3)
|
955 |
+
rotated_qk = rotated_qk_r2
|
956 |
+
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
|
957 |
+
|
958 |
+
|
959 |
+
#################################### HF registration ############################################################
|
960 |
+
|
961 |
+
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
|
962 |
+
|
963 |
+
# New
|
964 |
+
RavenConfig.register_for_auto_class()
|
965 |
+
|
966 |
+
RavenForCausalLM.register_for_auto_class("AutoModel")
|
967 |
+
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")
|
968 |
+
|
969 |
+
# Old?
|
970 |
+
AutoConfig.register("huginn_raven", RavenConfig)
|
971 |
+
AutoModel.register(RavenConfig, RavenForCausalLM)
|
972 |
+
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)
|