File size: 87,968 Bytes
b5b1f9d
f3118d1
 
 
 
 
b5b1f9d
 
 
f3118d1
b5b1f9d
 
f3118d1
 
b5b1f9d
f3118d1
 
a213de4
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
b5b1f9d
f3118d1
 
 
b5b1f9d
f3118d1
b5b1f9d
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
b5b1f9d
f3118d1
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
b5b1f9d
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
f3118d1
b5b1f9d
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
 
 
 
f3118d1
 
b5b1f9d
 
 
 
f3118d1
 
a213de4
b5b1f9d
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
b5b1f9d
 
 
 
 
 
 
 
 
f3118d1
 
b5b1f9d
f3118d1
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
b5b1f9d
f3118d1
 
 
b5b1f9d
f3118d1
 
 
 
a213de4
f3118d1
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
b5b1f9d
 
f3118d1
b5b1f9d
 
 
f3118d1
 
b5b1f9d
 
f3118d1
 
 
b5b1f9d
f3118d1
 
b5b1f9d
f3118d1
 
 
 
b5b1f9d
 
 
 
 
f3118d1
 
 
 
b5b1f9d
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
 
f3118d1
b5b1f9d
 
 
f3118d1
b5b1f9d
f3118d1
b5b1f9d
f3118d1
 
 
 
 
b5b1f9d
f3118d1
 
 
 
 
 
b5b1f9d
f3118d1
b5b1f9d
 
f3118d1
 
b5b1f9d
f3118d1
b5b1f9d
 
f3118d1
b5b1f9d
f3118d1
 
 
 
 
 
b5b1f9d
f3118d1
b5b1f9d
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
b5b1f9d
 
 
 
f3118d1
 
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
f3118d1
b5b1f9d
f3118d1
 
 
 
b5b1f9d
f3118d1
 
b5b1f9d
f3118d1
 
 
 
 
 
 
b5b1f9d
f3118d1
b5b1f9d
 
 
 
 
f3118d1
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
 
b5b1f9d
 
f3118d1
 
 
 
 
 
 
b5b1f9d
f3118d1
b5b1f9d
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
b5b1f9d
f3118d1
b5b1f9d
f3118d1
b5b1f9d
 
f3118d1
 
 
 
 
b5b1f9d
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
 
 
 
 
 
a213de4
 
 
b5b1f9d
 
a213de4
b5b1f9d
 
 
 
a213de4
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
b5b1f9d
f3118d1
 
 
 
b5b1f9d
 
f3118d1
 
 
b5b1f9d
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
f3118d1
b5b1f9d
 
f3118d1
 
b5b1f9d
 
 
 
 
f3118d1
b5b1f9d
 
f3118d1
 
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
b5b1f9d
f3118d1
b5b1f9d
 
 
 
 
 
f3118d1
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
f3118d1
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
f3118d1
b5b1f9d
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
f3118d1
 
 
 
b5b1f9d
 
f3118d1
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
b5b1f9d
f3118d1
 
 
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
b5b1f9d
 
 
 
 
 
f3118d1
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5b1f9d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3118d1
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
"""Modeling file for HF compatibility and zero-shot experiments."""

import torch
import math

from torch import Tensor
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, flex_attention
from torch.nn.attention import bias as attn_bias
from torch.utils.checkpoint import checkpoint
from dataclasses import dataclass
from typing import Union, Optional, Any, Tuple, Callable, List
from functools import cache, cached_property

from .raven_config_minimal import RavenConfig
from transformers.cache_utils import Cache, DynamicCache, StaticCache

###################### Huggingface Glue code I ##################################################################
from transformers import PreTrainedModel, GenerationMixin
from transformers.utils import ModelOutput
from transformers.generation.utils import GenerateDecoderOnlyOutput

import torch.nn.functional as F
from transformers import GenerationConfig


class RavenPreTrainedModel(PreTrainedModel):
    config_class = RavenConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["SandwichBlock"]
    _skip_keys_device_placement = ["past_key_values"]
    _tied_weights_keys = ["lm_head.weight"]
    _supports_flash_attn_2 = True
    _supports_sdpa = True
    _supports_cache_class = True
    _supports_quantized_cache = False
    _supports_static_cache = True
    _tp_plan = {}

    @cache
    def _init_func(self, dim, num_layers):
        return {
            "std": math.sqrt(2 / (5 * dim)),
            "out_proj": math.sqrt(2 / (5 * dim)) / math.sqrt(2 * num_layers),
            "embedding": math.sqrt(2 / (5 * dim)),
            "embed_scale": math.sqrt(dim),
        }

    @property
    def emb_scale(self):
        return self._init_func(self.config.n_embd, self.config.effective_expected_depth)["embed_scale"]

    def _normal_(self, tensor, std):
        return torch.nn.init.trunc_normal_(tensor, mean=0.0, std=std, a=-3 * std, b=3 * std)

    @torch.no_grad()
    def init_qkv(self, qkv_tensor, init_fn, qk_std, v_std, dim, head_dim):
        s = qkv_tensor.shape[0]
        n_kv_heads = (s - dim) // (2 * head_dim)
        shapes = [dim, n_kv_heads * head_dim, n_kv_heads * head_dim]

        Q, K, V = (
            qkv_tensor.new_empty([shapes[0], dim]),
            qkv_tensor.new_empty([shapes[1], dim]),
            qkv_tensor.new_empty([shapes[2], dim]),
        )
        init_fn(Q, qk_std)
        init_fn(K, qk_std)
        init_fn(V, v_std)
        qkv_tensor.data.copy_(torch.cat([Q, K, V], dim=0).contiguous())

    @torch.no_grad()
    def init_glu(self, glu_tensor, init_fn, w1_std, w2_std):
        g, h = glu_tensor.shape
        W1, W2 = (
            glu_tensor.new_empty([g // 2, h]),
            glu_tensor.new_empty([g // 2, h]),
        )
        init_fn(W1, w1_std)
        init_fn(W2, w2_std)
        glu_tensor.data.copy_(torch.cat([W1, W2], dim=0).contiguous())

    @cached_property
    def _full_name_of_module_lookup(self):
        return {id(m): n for n, m in self.named_modules()}

    @torch.no_grad()
    def _init_weights(self, module):
        _init_values = self._init_func(self.config.n_embd, self.config.effective_expected_depth)
        name = self._full_name_of_module_lookup[id(module)]
        if isinstance(module, RMSNorm):
            torch.nn.init.ones_(module.weight)
        elif isinstance(module, torch.nn.Linear):
            if "Wqkv" in name:
                self.init_qkv(
                    module.weight,
                    self._normal_,
                    float(_init_values["std"]),
                    float(_init_values["std"]),
                    self.config.n_embd,
                    self.config.head_dim,
                )
            elif "fc" in name:
                self.init_glu(module.weight, self._normal_, float(_init_values["std"]), float(_init_values["out_proj"]))
            elif "mlp.proj" in name or "attn.proj" in name:
                self._normal_(module.weight, std=float(_init_values["out_proj"]))
            elif "adapter" in name or "lm_head" in name:
                self._normal_(module.weight, std=float(_init_values["std"]))
        elif isinstance(module, torch.nn.Embedding):
            self._normal_(module.weight, std=float(_init_values["embedding"]))


@dataclass
class CausalLMOutputRecurrentLatents(ModelOutput):
    loss: Optional[torch.Tensor] = None
    log_ppl: Optional[torch.Tensor] = None
    logits: Optional[torch.Tensor] = None
    past_key_values: Optional[Cache] = None
    latent_states: Optional[torch.Tensor] = None
    hidden_states: Optional[torch.Tensor] = None
    attention_maps: Optional[dict[int, torch.Tensor]] = None
    stats: Optional[dict] = None


###################### Minimal implementation from here ############################################################


class RMSNorm(torch.nn.Module):
    """Saner dtype handling and slightly better for fusion"""

    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = torch.nn.Parameter(torch.ones(dim))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        with torch.autocast(enabled=False, device_type=x.device.type if x.device.type != "meta" else "cuda"):
            return self._norm(x.float()).type_as(x) * self.weight

    def reset_parameters(self) -> None:
        torch.nn.init.ones_(self.weight)


class HuginnDynamicCache(DynamicCache):
    def __init__(self, lookup_strategy: str = "full") -> None:
        super().__init__()
        self._seen_tokens = 0
        self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
        self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
        # structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
        # the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
        # per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
        # Also, It is critical that the head indices do not overlap with the recurrent iteration indices
        self.lookup_strategy = lookup_strategy

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        step_idx_tensor: torch.Tensor,
        lookup_strategy: Optional[str] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        step_idx: int = int(step_idx_tensor)  # todo: fix dicts with tensor step_idx, currently the memberships fail
        lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
        if "compress-" in self.lookup_strategy and step_idx > 1:  # hardcode for current model!
            if "compress-s" in self.lookup_strategy:
                compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
                new_step_idx = (step_idx - 2) % compression_stage + 2
            elif "compress-anchor" in self.lookup_strategy:
                if step_idx - 2 < 4 * 8:  # anchor onto first 8 recurrence steps  # noqa: SIM108
                    new_step_idx = step_idx
                else:  # then re-use the next 4 KV states = one recurrence for all future recurrence
                    new_step_idx = 34 + (step_idx - 34) % 4
                # print(step_idx, new_step_idx)
            else:  # compress-r
                compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
                new_step_idx = (step_idx - 2) // compression_stage + 2
            step_idx = new_step_idx
        # Init
        if step_idx not in self.key_cache:
            self.key_cache[step_idx] = {}
            self.value_cache[step_idx] = {}
        # Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
        if step_idx == 0:
            self._seen_tokens += key_states.shape[-2]
        # Add entries to cache
        for idx, entry in enumerate(key_states.unbind(dim=-2)):
            if "compress-" not in self.lookup_strategy:
                assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
            self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
        for idx, entry in enumerate(value_states.unbind(dim=-2)):
            self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry

        # Materialize past state based on lookup strategy:
        if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
            # All entries are present, materialize cache as normal
            return (
                torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
                torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
            )
        else:  # some entries were not previously computed
            if lookup_strategy.startswith("latest-m4"):
                latest_keys = []
                latest_values = []
                for token_pos in range(self._seen_tokens):
                    # For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
                    if step_idx >= 2:
                        # Find valid steps for this token position
                        valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
                        max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
                    else:
                        max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
                    latest_keys.append(self.key_cache[max_step][token_pos])
                    latest_values.append(self.value_cache[max_step][token_pos])
                return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
            elif lookup_strategy.startswith("available-m4"):
                latest_keys = []
                latest_values = []
                for token_pos in range(self._seen_tokens):
                    if token_pos in self.key_cache[step_idx]:
                        step = step_idx
                    else:
                        # Find valid steps for this token position
                        valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
                        step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
                    latest_keys.append(self.key_cache[step][token_pos])
                    latest_values.append(self.value_cache[step][token_pos])
                return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
            elif lookup_strategy.startswith("always-last-m4"):
                latest_keys = []
                latest_values = []
                for token_pos in range(self._seen_tokens):
                    # For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
                    if step_idx >= 2:
                        # Find valid steps for this token position
                        valid_steps = [key_step for key_step in self.key_cache if token_pos in self.key_cache[key_step]]
                        max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
                    else:
                        max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
                    latest_keys.append(self.key_cache[max_step][token_pos])
                    latest_values.append(self.value_cache[max_step][token_pos])
                return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
            elif lookup_strategy.startswith("skip"):
                existing_keys = []
                existing_values = []
                for token_pos in range(self._seen_tokens):
                    if token_pos in self.key_cache[step_idx]:
                        existing_keys.append(self.key_cache[step_idx][token_pos])
                        existing_values.append(self.value_cache[step_idx][token_pos])
                return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
            elif lookup_strategy.startswith("randomized"):  # sanity check
                rand_keys = []
                rand_values = []
                for token_pos in range(self._seen_tokens):
                    if step_idx < 2:  # For prelude steps
                        max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
                    else:  # Get all steps from same block position
                        curr_modulo = (step_idx - 2) % 4 + 2
                        valid_steps = [
                            s
                            for s in range(2, step_idx + 1)
                            if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
                        ]
                        max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
                    rand_keys.append(self.key_cache[max_step][token_pos])
                    rand_values.append(self.value_cache[max_step][token_pos])
                return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
            else:
                raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")

    def reset(self) -> None:
        """Reset the cache state."""
        self._seen_tokens = 0
        self.key_cache.clear()
        self.value_cache.clear()

    def clear_last_k_entries(self, k: int = 0):
        """Partially clear cache."""
        assert self._seen_tokens >= k
        self._seen_tokens = self._seen_tokens - k
        # self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
        self.key_cache = {
            step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
            for step, cache in self.key_cache.items()
        }
        self.value_cache = {
            step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
            for step, cache in self.value_cache.items()
        }

    def get_seq_length(self, step_idx: int = 0) -> int:
        return self._seen_tokens

    def get_memory_usage(self) -> float:
        total_bytes = 0
        # For each recurrent step/layer index
        for step_idx in self.key_cache:
            # Get the sequence cache for this step
            key_seq_cache = self.key_cache[step_idx]
            for seq_idx in key_seq_cache:
                key_tensor = key_seq_cache[seq_idx]
                # Add memory for of key tensors, assuming value is the same
                total_bytes += key_tensor.nelement() * key_tensor.element_size()
        return total_bytes * 2 / (1024 * 1024)


class HuginnStaticCache(Cache):
    """Static Cache for the recurrent model"""

    is_compileable = False  # this is todo

    def __init__(
        self,
        max_length: int,
        max_num_steps: int,
        num_heads: int,
        hidden_dim: int,
        batch_size: int = 1,
        lookup_strategy: str = "full",
        device: Optional[Union[torch.device, str]] = None,
        dtype: torch.dtype = torch.float32,
    ) -> None:
        super().__init__()
        self._seen_tokens = 0
        self.max_length = max_length
        self.lookup_strategy = lookup_strategy

        # Adjust max_num_steps based on compression strategy
        if "compress-" in lookup_strategy:
            compression_stage = int(lookup_strategy.split("compress-")[1][1:])
            if "compress-s" in lookup_strategy:
                # For modulo compression (s), we need steps for 0,1 + compressed steps
                self.max_num_steps = 4 + compression_stage
            else:
                # For relative compression, we need steps for 0,1 + compressed steps
                self.max_num_steps = 4 + (max_num_steps - 4 + compression_stage - 1) // compression_stage
        else:
            self.max_num_steps = max_num_steps

        # Pre-allocate cache tensors [steps, batch, heads, seq_len, head_dim]
        device = torch.device(device) if device is not None else None
        cache_shape = (self.max_num_steps, batch_size, num_heads, max_length, hidden_dim)

        self.key_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
        self.value_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
        self.valid_mask = torch.zeros((self.max_num_steps, max_length), dtype=torch.bool, device=device)
        # Mark tensors as static for compile
        torch._dynamo.mark_static_address(self.key_cache)
        torch._dynamo.mark_static_address(self.value_cache)
        torch._dynamo.mark_static_address(self.valid_mask)

    def update(
        self,
        key_states: torch.Tensor,
        value_states: torch.Tensor,
        step_idx: torch.Tensor,
        lookup_strategy: Optional[str] = None,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        if step_idx == 0:
            self._seen_tokens += key_states.shape[-2]

        # Adjust step_idx for compression
        lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
        if "compress-" in lookup_strategy and step_idx > 1:
            compression_stage = int(lookup_strategy.split("compress-")[1][1:])
            if "compress-s" in lookup_strategy:
                step_idx = (step_idx - 2) % compression_stage + 2
            else:
                step_idx = (step_idx - 2) // compression_stage + 2

        start_idx = self._seen_tokens - key_states.shape[-2]

        indices = torch.arange(start_idx, start_idx + key_states.shape[-2], device=key_states.device)
        self.key_cache[step_idx].index_copy_(2, indices, key_states)
        self.value_cache[step_idx].index_copy_(2, indices, value_states)
        self.valid_mask[step_idx, start_idx : start_idx + key_states.shape[-2]] = True

        # Return based on lookup strategy
        if lookup_strategy == "full":
            return (
                self.key_cache[step_idx, :, :, : self._seen_tokens],
                self.value_cache[step_idx, :, :, : self._seen_tokens],
            )
        elif lookup_strategy.startswith("latest-m4"):
            if step_idx >= 2:
                pattern_steps = torch.arange(2, step_idx.item() + 1, 4, device=self.valid_mask.device)
                pattern_valid = self.valid_mask[pattern_steps]
                max_valid_step = pattern_steps[pattern_valid.to(torch.long).argmax(dim=0)]
                return (
                    self.key_cache[max_valid_step, torch.arange(self._seen_tokens)],
                    self.value_cache[max_valid_step, torch.arange(self._seen_tokens)],
                )
            return self.key_cache[step_idx, :, :, : self._seen_tokens], self.value_cache[
                step_idx, :, :, : self._seen_tokens
            ]
        elif lookup_strategy == "skip":
            valid_mask = self.valid_mask[step_idx, : self._seen_tokens]
            return (
                self.key_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
                self.value_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
            )
        elif lookup_strategy.startswith("randomized"):
            if step_idx < 2:
                max_step = step_idx
            else:
                curr_modulo = (step_idx - 2) % 4 + 2
                valid_steps = (
                    torch.where(
                        (torch.arange(2, step_idx.item() + 1, device=self.valid_mask.device) - 2) % 4 + 2 == curr_modulo
                    )[0]
                    + 2
                )
                rand_idx = torch.randint(len(valid_steps), (1,), device=valid_steps.device)
                max_step = valid_steps[rand_idx]
            return self.key_cache[max_step, : self._seen_tokens], self.value_cache[max_step, : self._seen_tokens]
        else:
            raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")

    def reset(self) -> None:
        self._seen_tokens = 0
        self.key_cache.zero_()
        self.value_cache.zero_()
        self.valid_mask.zero_()

    def get_seq_length(self, step_idx: int = 0) -> int:
        return self._seen_tokens

    def get_memory_usage(self) -> float:
        return (self.key_cache.nelement() + self.value_cache.nelement()) * self.key_cache.element_size() / (1024 * 1024)


ValidCache = HuginnDynamicCache | HuginnStaticCache


class CausalSelfAttention(torch.nn.Module):
    def __init__(self, config: RavenConfig) -> None:
        super().__init__()
        self.config = config
        self.n_head = config.num_attention_heads
        self.n_kv_heads = config.num_key_value_heads
        self.head_dim = config.n_embd // self.n_head

        shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
        self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
        self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
        if config.qk_bias:
            self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
        self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        block_idx: torch.Tensor,
        mask: Optional[BlockMask] = None,
        past_key_values: Optional[ValidCache] = None,
    ) -> Tensor:
        B, S, E = x.shape  # batch size, sequence length, embedding dimensionality (n_embd)
        q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
        q = q.view(B, S, self.n_head, self.head_dim)
        k = k.view(B, S, self.n_kv_heads, self.head_dim)
        v = v.view(B, S, self.n_kv_heads, self.head_dim)
        # bias?
        if self.config.qk_bias:
            q_bias, k_bias = self.qk_bias.split(1, dim=0)
            q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
        # apply rotary
        q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)

        q = q.transpose(1, 2)  # (B, nh, S, hs)
        k = k.transpose(1, 2)
        v = v.transpose(1, 2)

        if past_key_values is not None:
            k, v = past_key_values.update(k, v, block_idx)

        if mask is not None:
            y: torch.Tensor = flex_attention(q, k, v, block_mask=mask)  # type: ignore
        else:
            if q.shape[2] < k.shape[2]:
                if q.shape[2] > 1:
                    bias = attn_bias.causal_lower_right(q.shape[2], k.shape[2])
                    y = torch.nn.functional.scaled_dot_product_attention(q, k, v, bias, dropout_p=0.0)
                else:
                    y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
            else:
                y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=True)
        y = y.transpose(1, 2).reshape(B, S, E).contiguous()  # reshape is a view if possible (it mostly is)
        return self.proj(y)


class GatedMLP(torch.nn.Module):
    def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
        super().__init__()
        in_features = config.n_embd if in_features == 0 else in_features
        self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)

        self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
        self.nonlin = torch.nn.SiLU()

    def forward(self, x: Tensor) -> Tensor:
        # modified to single FC layer to improve parallelism
        x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
        x = self.nonlin(x_fc_1) * x_fc_2
        return self.proj(x)


class SandwichBlock(torch.nn.Module):
    expanded = False

    def __init__(self, config: RavenConfig, layer_id: int) -> None:
        super().__init__()
        self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.attn = CausalSelfAttention(config)
        self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.mlp = GatedMLP(config)
        self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
        self.layer_id = layer_id

    def forward(
        self,
        x: Tensor,
        freqs_cis: Tensor,
        step_idx: int,
        mask: Optional[BlockMask] = None,
        past_key_values: Optional[ValidCache] = None,
    ) -> Tensor:
        attn_out = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values)
        x = self.norm_2(attn_out + x)
        x = self.norm_4(self.mlp(self.norm_3(x)) + x)
        return x


#################################### Main Model ##################################################################


class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
    freqs_cis: torch.Tensor

    def __init__(
        self,
        config: RavenConfig,
    ) -> None:
        super().__init__(config)
        self.config = config

        # Transformer layers
        prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
        adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
        core_block = torch.nn.ModuleList(
            SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
            for i in range(config.n_layers_in_recurrent_block)
        )
        o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
        coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))

        self.transformer = torch.nn.ModuleDict(
            dict(
                wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
                prelude=prelude,
                adapter=adapter,
                core_block=core_block,
                coda=coda,
                ln_f=RMSNorm(config.n_embd, eps=config.norm_eps),  # used twice :>
            )
        )
        # Head
        self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
        if self.config.tie_embeddings:
            self.tie_weights()
        # rope
        self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
        self.gradient_checkpointing = False
        # Call weight init through HF post init:
        self.post_init()

    def get_input_embeddings(self):
        return self.transformer.wte

    def get_output_embeddings(self):
        return self.lm_head

    def _precompute_freqs_cis(self):
        return precompute_freqs_cis(
            self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
        )

    def compile_mask(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[ValidCache] = None,
        pad_token_id=65509,
    ) -> Optional[BlockMask]:
        batch_size, seq_len = input_ids.shape[0], input_ids.shape[1]

        # If no padding and no attention mask, no need for a mask
        if attention_mask is None and (input_ids == pad_token_id).sum() == 0:
            return None

        if past_key_values is not None and seq_len == 1:
            return None

        # Get total sequence length including cache
        cache_len = past_key_values.get_seq_length() if past_key_values is not None else 0
        kv_length = cache_len + seq_len

        if attention_mask is None:

            def mask_mod(b, h, q_idx, kv_idx):
                return q_idx >= kv_idx & (input_ids[b, kv_idx] != pad_token_id)
        else:

            def mask_mod(b, h, q_idx, kv_idx):
                return (q_idx >= kv_idx) & (input_ids[b, kv_idx] != pad_token_id) & attention_mask[b, q_idx, kv_idx]

        kv_length = past_key_values.get_seq_length() if past_key_values is not None else seq_len
        if kv_length == 0:
            kv_length = seq_len  # prefill
        block_mask = create_block_mask(
            mask_mod,
            B=batch_size,
            H=None,
            Q_LEN=seq_len,
            KV_LEN=kv_length,
            device=str(input_ids.device),
        )

        return block_mask

    def forward(
        self,
        input_ids: torch.Tensor,
        input_embeds: Optional[torch.Tensor] = None,
        input_states: Optional[torch.Tensor] = None,
        attention_mask: Optional[torch.Tensor] = None,  # binary  mask of shape q x kv, True=valid position
        position_ids: Optional[torch.Tensor] = None,
        labels: Optional[torch.Tensor] = None,
        num_steps: Optional[torch.Tensor] = None,
        past_key_values: Optional[ValidCache] = None,
        output_details: dict = {
            "return_logits": True,
            "return_latents": True,
            "return_head": False,
            "return_stats": False,
        },
        use_cache: bool = False,
        cache_position: Optional[torch.Tensor] = None,
        init_scale: float = 1.0,
        **kwargs,
    ) -> CausalLMOutputRecurrentLatents:
        # Support multiple position formats:
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]

        if input_embeds is None:
            input_embeds = self.transformer.wte(input_ids)  # type: ignore # types broken in 2.6+

        if self.emb_scale != 1:
            input_embeds = input_embeds * self.emb_scale  # type: ignore

        if use_cache and past_key_values is None:
            past_key_values = HuginnDynamicCache()

        prepared_attn_mask = None  # self.compile_mask(input_ids, attention_mask, past_key_values)
        block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long)  # count in tensors for compile
        # Non-recurrent prelude
        for block in self.transformer.prelude:  # type: ignore # types broken in 2.6+
            block_idx += 1
            input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)

        # Main recurrence
        x, num_steps_no_grad, num_steps_with_grad, xk, block_idx = self.iterate_forward(
            input_embeds,  # type: ignore # mystery typing error
            input_states,
            freqs_cis,
            block_idx,
            prepared_attn_mask,
            past_key_values,
            num_steps,
            init_scale,
        )
        latent_states = x.clone().detach()

        # Coda layers
        block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long)  # use negative indices for head
        for block in self.transformer.coda:  # type: ignore # types broken in 2.6+
            block_idx -= 1
            x = block(x, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
        x = self.transformer.ln_f(x)  # type: ignore # types broken in 2.6+

        # Prediction head, assuming labels really are labels and not equal to input_ids
        if labels is not None:
            logits = self.lm_head(x).float()
            loss = torch.nn.functional.cross_entropy(
                logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=-100
            )
            log_ppl = loss.clone().detach().exp()
        else:
            logits = self.lm_head(x).float()
            loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)

        return CausalLMOutputRecurrentLatents(
            loss=loss,
            log_ppl=log_ppl,
            logits=logits if output_details["return_logits"] else None,
            past_key_values=past_key_values,
            hidden_states=x if output_details["return_head"] else None,
            latent_states=latent_states if output_details["return_latents"] else None,
            stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
            if output_details["return_stats"]
            else None,
        )

    @torch._dynamo.disable(recursive=False)  # type: ignore
    def iterate_forward(
        self,
        input_embeds: torch.Tensor,
        input_states: torch.Tensor,
        freqs_cis,
        block_idx: torch.Tensor,
        mask: Optional[BlockMask],
        past_key_values: Optional[ValidCache] = None,
        num_steps: Optional[torch.Tensor] = None,
        init_scale: float = 1.0,
    ):
        x = xk = self.initialize_state(input_embeds, scale=init_scale) if input_states is None else input_states.clone()
        if num_steps is None:
            num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler()  # type: ignore
        elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
            num_steps_no_grad, num_steps_with_grad = num_steps
        else:
            num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0) if not x.is_meta else 0

        with torch.no_grad():
            # ultra annoying in ddp due to
            # https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
            # for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
            # and all parameters are always used
            for no_grad_step in range(num_steps_no_grad):
                xk = x
                x, block_idx = self.core_block_forward(
                    xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, no_grad_step
                )

        for grad_step in range(num_steps_with_grad):
            xk = x
            x, block_idx = self._maybe_checkpoint_core_block(
                xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, num_steps_no_grad + grad_step
            )
        return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx  # type: ignore # types broken in 2.6+

    def core_block_forward(
        self,
        x,
        input_embeds,
        freqs_cis,
        mask: Optional[BlockMask],
        past_key_values,
        block_idx: torch.Tensor,
        current_step: int | Tensor,
    ):
        block_idx = block_idx.detach().clone()  # line only included to convince torch.checkpointing
        x = self._maybe_inject_noise(x, current_step)
        x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1))  # type: ignore # types broken in 2.6+
        for block in self.transformer.core_block:  # type: ignore # types broken in 2.6+
            block_idx += 1
            x = block(x, freqs_cis, block_idx, mask, past_key_values)

        return x, block_idx

    @torch._dynamo.disable(recursive=False)  # type: ignore
    def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
        """Outputs are long tensors so that they can be passed through compiled functions"""
        t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
        s = self.config.mean_backprop_depth
        if torch.rand((1,)).is_meta:  # annoying clause to make meta-tensor-based flop counting work
            # these values are only the mean TFLOPs of the randomized sampler
            # Note that this clause also breaks the contract, and returns ints in meta tensor mode
            return t, s  # type: ignore
        if self.training:
            sigma = 0.5
            mu = math.log(t + s) - (sigma**2 / 2)
            rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
            p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
            n = torch.clamp(p - s, min=0)
            k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
        else:
            n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)

        return n.to(dtype=torch.long), k.to(dtype=torch.long)

    def initialize_state(self, input_embeds, scale: float = 1.0):
        x = torch.randn_like(input_embeds)
        std = self.config.init_values["std"] * scale
        if std > 0:
            torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
            if self.emb_scale != 1:
                x = x * self.emb_scale
        else:
            x.zero_()
        return x

    def _maybe_inject_noise(self, x, current_step, renorm=True):
        if self.config.test_time_noise > 0:
            n = self.config.test_time_noise * self.config.init_values["std"] * self.emb_scale
            if self.config.test_time_noise_type == "geom":
                step1 = torch.as_tensor(current_step + 1, device=x.device)  # need to cast for compile
                x = x * (1 - n / step1) + torch.randn_like(x) * n / step1
            elif self.config.test_time_noise_type == "sqrt":
                step1sqrt = torch.as_tensor(current_step + 1, device=x.device).sqrt()  # need to cast for compile
                x = x * (1 - n / step1sqrt) + torch.randn_like(x) * n / step1sqrt
            elif self.config.test_time_noise_type == "line":
                noise = max(n, (self.config.mean_recurrence - current_step) / self.config.mean_recurrence)  # type: ignore
                x = x * (1 - noise) + torch.randn_like(x) * noise
            elif self.config.test_time_noise_type == "chi":
                noise = 2 * torch.rand(1, device=x.device, dtype=x.dtype) * n
                x = x * (1 - noise) + torch.randn_like(x) * noise
            elif self.config.test_time_noise_type == "fixed":
                x = x * (1 - n) + torch.randn_like(x) * n
            else:
                raise ValueError()

            if renorm:
                x = self.transformer.core_block[-1].norm_4(x)  # type: ignore moduledict types still broken in pytorch
        return x

    """ ------------------ Alternative interfaces into the model forward ---------------------------------------- """

    @torch.no_grad()
    def iterate_one_step(
        self,
        input_embeds,
        input_states,
        position_ids: Optional[torch.Tensor] = None,
        cache_position: Optional[torch.Tensor] = None,
        block_idx: torch.Tensor = torch.tensor(0, dtype=torch.long),
        attention_mask: Optional[BlockMask] = None,
        past_key_values: Optional[ValidCache] = None,
        current_step: int = 0,
    ):
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]
        x, block_idx = self.core_block_forward(
            input_states,
            input_embeds,
            freqs_cis,
            attention_mask,
            past_key_values,
            block_idx,
            current_step=current_step,
        )
        return x, block_idx, current_step + 1

    def predict_from_latents(
        self,
        latents,
        attention_mask: Optional[BlockMask] = None,
        position_ids: Optional[torch.Tensor] = None,
        cache_position: Optional[torch.Tensor] = None,
        past_key_values: Optional[ValidCache] = None,
    ):
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : latents.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]
        x = self.transformer.ln_f(latents)  # type: ignore # types broken in 2.6+
        # Coda layers
        block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long)  # use negative indices for head
        for block in self.transformer.coda:  # type: ignore # types broken in 2.6+
            block_idx -= 1
            x = block(x, freqs_cis, block_idx, attention_mask, past_key_values)
        x = self.transformer.ln_f(x)  # type: ignore # types broken in 2.6+

        logits = self.lm_head(x).float()

        return CausalLMOutputRecurrentLatents(
            loss=torch.as_tensor(0.0),
            log_ppl=torch.as_tensor(0.0),
            logits=logits,
            past_key_values=past_key_values,
            latent_states=x,
        )

    def embed_inputs(
        self,
        input_ids: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[ValidCache] = None,
        use_cache: bool = False,
        cache_position: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> tuple[torch.Tensor, torch.Tensor]:
        # Support multiple position formats:
        if position_ids is None and cache_position is None:
            freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
        elif position_ids is not None:
            freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
        elif cache_position is not None:
            freqs_cis = self.freqs_cis[:, cache_position]

        input_embeds = self.transformer.wte(input_ids)  # type: ignore # types broken in 2.6+
        prepared_attn_mask = self.compile_mask(input_ids, attention_mask)

        if self.emb_scale != 1:
            input_embeds = input_embeds * self.emb_scale  # type: ignore

        if use_cache and past_key_values is None:
            past_key_values = HuginnDynamicCache()

        block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long)  # count in tensors for compile
        # Non-recurrent prelude
        for block in self.transformer.prelude:  # type: ignore # types broken in 2.6+
            block_idx += 1
            input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
        return input_embeds, block_idx

    @torch.no_grad()
    def _prefill_with_varied_exit_steps(
        self,
        input_ids: torch.Tensor,
        exit_evaluator: "PerIterationExitEvaluator",
        past_key_values: Optional[ValidCache] = None,
        init_scale: float = 1.0,
        **kwargs,
    ) -> Tuple[torch.Tensor, ValidCache, List[int]]:
        """ "
        Note that this the opposite of a real prefill, it goes token-by token and can adaptively exit on each.
        Use for scientific experiments.
        """
        # currently the cache doesn't support batching with adaptive compute
        assert input_ids.shape[0] == 1

        if past_key_values is None:
            past_key_values = HuginnDynamicCache()
        attention_mask = None
        output = torch.empty(
            (input_ids.shape[0], 0, self.config.vocab_size), device=input_ids.device, dtype=torch.float
        )
        compute_steps = []
        for pos in range(input_ids.shape[1]):
            aux_inputs = {
                "cache_position": pos,
                "past_key_values": past_key_values,
                "attention_mask": attention_mask,
            }
            freqs_cis = self.freqs_cis[:, pos]
            embedded_inputs, block_idx = self.embed_inputs(input_ids[:, pos].unsqueeze(1), **aux_inputs)

            current_latents = self.initialize_state(embedded_inputs, scale=init_scale)
            exit_evaluator.init(current_latents)

            # Main recurrence
            for compute_step in range(self.config.mean_recurrence):
                current_latents, block_idx, _ = self.iterate_one_step(
                    embedded_inputs,
                    current_latents,
                    block_idx=block_idx,
                    **aux_inputs,
                    current_step=compute_step,
                )
                new_exits, _, _ = exit_evaluator.check(self, current_latents, aux_inputs)
                if new_exits.any():
                    break
            compute_steps.append(compute_step + 1)

            x = self.transformer.ln_f(current_latents)  # type: ignore

            # Coda layers
            block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long)  # use negative indices for head
            for block in self.transformer.coda:  # type: ignore # types broken in 2.6+
                block_idx -= 1
                x = block(x, freqs_cis, block_idx, attention_mask, past_key_values)

            x = self.transformer.ln_f(x)  # type: ignore
            logits = self.lm_head(x).float()
            output = torch.cat([output, logits], dim=1)
        return output, past_key_values, compute_steps  # type: ignore

    @torch.no_grad()
    def forward_with_adaptive_compute(
        self,
        input_ids: torch.Tensor,
        exit_evaluator: "PerIterationExitEvaluator",
        labels: Optional[torch.Tensor] = None,
        past_key_values: Optional[ValidCache] = None,
        output_details: dict = {
            "return_logits": True,
            "return_latents": True,
            "return_head": False,
            "return_stats": False,
        },
        init_scale: float = 1.0,
        **kwargs,
    ) -> CausalLMOutputRecurrentLatents:
        """This forward call does not make use of the causal nature of transformers, it runs token-by token!
        Do not use this function for anything other than scientific experiments with adaptive compute!
        """
        logits, past_key_values, compute_steps = self._prefill_with_varied_exit_steps(
            input_ids, exit_evaluator, past_key_values, init_scale
        )
        if labels is not None:
            loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
            log_ppl = loss.clone().detach()
        else:
            loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)

        return CausalLMOutputRecurrentLatents(
            loss=loss,
            log_ppl=log_ppl,
            logits=logits if output_details["return_logits"] else None,
            past_key_values=None,
            hidden_states=None,
            latent_states=None,
            attention_maps=None,
            stats={"compute_steps": compute_steps},
        )

    def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
        probs = torch.softmax(logits.float(), dim=-1)
        prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
        residual_diff = (x - latent_states).norm(dim=-1)
        rel_residual = residual_diff / latent_states.norm(dim=-1)
        stats = {
            "entropy": prob_entropy,
            "residual_diff": residual_diff,
            "rel_residual": rel_residual,
            "num_steps_no_grad": num_steps_no_grad,
            "num_steps_with_grad": num_steps_with_grad,
        }
        return stats

    def _maybe_checkpoint_core_block(self, *args, **kwargs) -> tuple[Tensor, Tensor]:
        if self.gradient_checkpointing:
            return checkpoint(
                self.core_block_forward,
                *args,
                use_reentrant=False,
                preserve_rng_state=False,
                determinism_check="none",
                **kwargs,
            )  # type: ignore
        else:
            return self.core_block_forward(*args)

    """"------------------------------------------Generation Utilities from here----------------------------------"""

    def prepare_inputs_for_generation(
        self,
        input_ids: torch.Tensor,
        past_key_values: Optional[Cache] = None,
        attention_mask: Optional[torch.Tensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        cache_position: Optional[torch.Tensor] = None,
        cache_lookup_strategy: str = "full",
        **kwargs,
    ):
        model_inputs = {}
        model_inputs["cache_position"] = cache_position
        current_input_length = input_ids.shape[1]

        if past_key_values is not None:
            if not isinstance(past_key_values, (HuginnDynamicCache, HuginnStaticCache)):
                assert past_key_values.get_seq_length() == 0  # only replace empty caches
                # Need to use custom cache, detect and replace HF cache if generate injects it
                if isinstance(past_key_values, StaticCache):
                    past_key_values = HuginnStaticCache(
                        max_length=getattr(self.generation_config, "max_length", self.config.block_size),
                        max_num_steps=4 + kwargs.get("num_steps", self.config.mean_recurrence) * 4,
                        num_heads=self.config.num_key_value_heads,
                        hidden_dim=self.config.n_embd // self.config.num_attention_heads,
                        dtype=torch.bfloat16,
                        device=input_ids.device,
                        lookup_strategy=cache_lookup_strategy,
                    )
                else:
                    past_key_values = HuginnDynamicCache(lookup_strategy=cache_lookup_strategy)
            model_inputs["past_key_values"] = past_key_values if kwargs["use_cache"] else None
            input_ids = input_ids[:, cache_position]  # type: ignore

        model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)
        if cache_position is None:
            position_ids = torch.arange(current_input_length)[None, :].to(input_ids.device)
            model_inputs["position_ids"] = position_ids[:, -current_input_length:].clone(
                memory_format=torch.contiguous_format
            )  # some form of position_ids is a critical argument for the model to correctly apply rope!

        # forward all other entries
        for key, value in kwargs.items():
            if key not in model_inputs:
                model_inputs[key] = value
        return model_inputs

    @torch.no_grad()
    def generate(self, *args, **kwargs):
        """Dispatcher - use HF generate in all normal cases."""
        self.generation_config = args[1] if len(args) > 1 else self.generation_config
        if any(k in kwargs for k in ("criterion", "exit_threshold", "exit_evaluator")):
            return self.generate_with_adaptive_compute(*args, **kwargs)
        elif any(k in kwargs for k in ("draft_steps", "lookahead_for_draft", "verification_threshold")):
            return self.generate_speculative(*args, **kwargs)
        elif "continuous_compute" in kwargs:
            return self.generate_minimal(*args, **kwargs)
        else:
            return super().generate(*args, **kwargs)

    @torch.no_grad()
    def _prep_generate_args(
        self,
        input_ids: torch.Tensor,
        generation_config: Optional[GenerationConfig] = None,  # type: ignore
        cache_lookup_strategy: str = "full",
        model_kwargs: dict = {},
    ):
        # Setup
        if generation_config is None:
            generation_config: GenerationConfig = self.generation_config  # type: ignore
        if "max_new_tokens" in model_kwargs:
            max_new_tokens = model_kwargs["max_new_tokens"]
            if "max_length" in model_kwargs:
                max_new_tokens = min(max_new_tokens, model_kwargs["max_length"] - input_ids.shape[1])
        else:
            max_length = model_kwargs.get("max_length", generation_config.max_length)
            max_new_tokens = max_length - input_ids.shape[1]

        if "cache_implementation" not in model_kwargs or model_kwargs["cache_implementation"] == "dynamic":
            model_kwargs["past_key_values"] = HuginnDynamicCache(lookup_strategy=cache_lookup_strategy)
        else:
            model_kwargs["past_key_values"] = HuginnStaticCache(
                max_length=max_length,
                max_num_steps=4 + model_kwargs.get("num_steps", self.config.mean_recurrence) * 4,
                num_heads=self.config.num_key_value_heads,
                hidden_dim=self.config.n_embd // self.config.num_attention_heads,
                batch_size=input_ids.shape[0],
                dtype=torch.bfloat16,
                device=input_ids.device,
                lookup_strategy=cache_lookup_strategy,
            )
        model_kwargs["use_cache"] = True
        model_kwargs = self._get_initial_cache_position(input_ids.shape[1], input_ids.device, model_kwargs)
        return model_kwargs, generation_config, max_new_tokens

    @torch.no_grad()
    def generate_minimal(
        self,
        input_ids: torch.Tensor,
        generation_config: Optional[GenerationConfig] = None,  # type: ignore
        tokenizer=None,
        streamer=None,
        continuous_compute=False,  # warm-start state / continuous CoT
        init_scale: float = 1.0,
        cache_lookup_strategy: str = "full",
        **model_kwargs,
    ) -> Union[torch.Tensor, dict[str, Any]]:
        """Minimal single-sequence generation. Template for more complicated generate tasks"""
        model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
            input_ids, generation_config, cache_lookup_strategy, model_kwargs
        )
        stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)

        # Set up continuous compute if enabled
        if continuous_compute:
            embedded_inputs, _ = self.embed_inputs(input_ids)
            model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)

        # Generate tokens
        batch_size = input_ids.shape[0]
        for _ in range(max_new_tokens):
            # Forward pass
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(**model_inputs, init_scale=init_scale)

            # Get next token
            next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
            next_token = self._sample_next_token(next_token_logits, generation_config)

            # Append token to sequence
            input_ids = torch.cat([input_ids, next_token], dim=-1)

            if streamer:
                streamer.put(next_token.cpu())

            # Update model kwargs
            model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
            if continuous_compute:
                model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]

            if stop_tokens is not None:
                for i in range(batch_size):
                    if unfinished_sequences[i] and next_token[i, 0].item() in stop_tokens:
                        unfinished_sequences[i] = 0
            if "stopping_criteria" in model_kwargs:
                unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
            if unfinished_sequences.max() == 0:
                break

        if streamer:
            streamer.end()

        if generation_config.return_dict_in_generate:
            return GenerateDecoderOnlyOutput(
                sequences=input_ids,  # type: ignore
                scores=None,
                logits=None,
                attentions=None,
                hidden_states=None,
                past_key_values=model_kwargs.get("past_key_values"),
            )
        return input_ids

    @torch.no_grad()
    def generate_with_adaptive_compute(
        self,
        input_ids: torch.Tensor,
        generation_config: Optional[GenerationConfig] = None,  # type: ignore
        tokenizer=None,
        streamer=None,
        continuous_compute=False,  # warm-start state / continuous CoT
        criterion="none",  # adaptive compute is off by default, turn on by choosing an exit criterion
        exit_threshold: Union[str, float, int] = "auto",
        init_scale: float = 1.0,
        cache_lookup_strategy: str = "full",
        do_not_exit_in_prefill: bool = False,
        min_steps: int = 0,
        check_criterion_every_n_steps=1,
        exit_evaluator: "Optional[PerIterationExitEvaluator]" = None,  # optional plugin of a new exit eval object
        **model_kwargs,
    ) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
        """
        Generate tokens with adaptive compute. This is NOT the most efficient implementation.
        For batches, on each token, we iterate until the entire batch finishes.
        Note: While the method can be used batched, and will produce sensible results, this cannot be used to evaluate
              the success of adaptive compute methods, which should only ever be benchmarked with batch_size=1.
              This is because the KV-cache entries are necessarily batched and so contain entries equal to the sequence
              with the largest number of steps in the whole batch, and these KV states, which would not have been computed
              if there was only one (short compute) sequence in the batch, will be picked up by later compute steps,
              making early exits look better than they are.
        """
        model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
            input_ids, generation_config, cache_lookup_strategy, model_kwargs
        )
        max_steps = model_kwargs.get("num_steps", self.config.mean_recurrence)
        stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
        logit_type = dict(copy=True, dtype=torch.float32, device=input_ids.device)
        batch_size = input_ids.shape[0]
        compute_steps = []

        # Set up continuous compute if enabled
        if continuous_compute:
            embedded_inputs, _ = self.embed_inputs(input_ids)
            model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)

        # Track which sequences have finished (using unfinished_sequences to match generate_minimal)
        unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)

        if exit_evaluator is None:
            exit_evaluator = get_adaptive_exit_evaluator(self, criterion, exit_threshold)

        # Generate tokens
        for token_step_in_sequence in range(max_new_tokens):
            # Adaptive compute forward
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            aux_inputs = {
                k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
            }
            embedded_inputs, block_idx = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
            current_latents = (
                self.initialize_state(embedded_inputs, scale=init_scale)
                if not continuous_compute
                else model_kwargs["input_states"]
            )

            # Initialize next_states for continuous compute
            if continuous_compute:
                next_states = current_latents[:, -1:, :].clone()

            # Initialize criterion tracking for each sequence in batch
            exit_values_per_seq = [[] for _ in range(batch_size)]
            compute_steps_per_seq = [0] * batch_size
            exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)

            outputs, next_token_logits = None, None
            exit_evaluator.init(current_latents)

            # Iterate through compute steps
            for compute_step in range(max_steps):
                current_latents, block_idx, _ = self.iterate_one_step(
                    embedded_inputs,
                    current_latents,
                    block_idx=block_idx,
                    **aux_inputs,
                    current_step=compute_step,
                )

                # Skip checking exit conditions if min_steps not met, or not checking this step, or in prefill
                if (
                    compute_step < min_steps
                    or (compute_step - min_steps) % check_criterion_every_n_steps != 0
                    or (do_not_exit_in_prefill and token_step_in_sequence == 0)
                ):
                    continue

                # Otherwise check for new exits, potentially by evaluating the coda:
                new_exits, outputs, exit_values = exit_evaluator.check(self, current_latents, aux_inputs)

                # Record values and check exits for each sequence
                for i in range(batch_size):
                    if not exit_reached[i] and unfinished_sequences[i].bool():
                        exit_values_per_seq[i].append(exit_values[i].item())

                new_exits = new_exits & ~exit_reached & unfinished_sequences.bool()

                if new_exits.any():
                    exit_reached = exit_reached | new_exits
                    if outputs is not None:
                        logits = outputs.logits
                    else:
                        # For latent-based criteria, compute outputs when we need them
                        outputs = self.predict_from_latents(current_latents, **aux_inputs)
                        logits = outputs.logits

                    if next_token_logits is None:
                        next_token_logits = logits[:, -1, :].to(**logit_type)  # type: ignore
                    else:
                        next_token_logits[new_exits] = logits[new_exits, -1, :].to(**logit_type)  # type: ignore

                    for i in range(batch_size):
                        if new_exits[i]:
                            compute_steps_per_seq[i] = compute_step + 1

                    # Update continuous compute states for newly exited sequences
                    if continuous_compute:
                        next_states[new_exits] = current_latents[new_exits, -1:, :]

                # If all sequences have exited or finished, break early
                if (exit_reached | ~unfinished_sequences.bool()).all():
                    break

            # This else triggers if the for loop finishes without breaking:
            else:
                if outputs is None:
                    outputs = self.predict_from_latents(current_latents, **aux_inputs)

                # For sequences that didn't exit early, use the final logits
                if next_token_logits is None:
                    next_token_logits = outputs.logits[:, -1, :].to(**logit_type)  # type: ignore
                    for i in range(batch_size):
                        compute_steps_per_seq[i] = max_steps
                else:
                    for i in range(batch_size):
                        if not exit_reached[i] and unfinished_sequences[i].bool():
                            next_token_logits[i] = outputs.logits[i, -1, :].to(**logit_type)  # type: ignore
                            compute_steps_per_seq[i] = max_steps
            # Save latent states for continuous compute if enabled
            if continuous_compute:
                still_running = ~exit_reached & unfinished_sequences.bool()
                next_states[still_running] = current_latents[still_running, -1:, :]
                model_kwargs["input_states"] = next_states

            # Record compute steps for this token generation
            compute_steps.append([compute_steps_per_seq, exit_values_per_seq])

            # Sample or select next token based on generation config
            next_token = self._sample_next_token(next_token_logits, generation_config)

            # Append token to sequence
            input_ids = torch.cat([input_ids, next_token], dim=-1)

            if streamer:
                streamer.put(next_token.cpu())

            # Update model kwargs for next iteration
            model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)  # type: ignore

            # Check for stop tokens and update unfinished sequences
            for i in range(batch_size):
                if (
                    unfinished_sequences[i].bool()
                    and stop_tokens is not None
                    and next_token[i, 0].item() in stop_tokens
                ):
                    unfinished_sequences[i] = 0

            # Apply any custom stopping criteria
            if "stopping_criteria" in model_kwargs:
                unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)

            # Break if all sequences are finished
            if unfinished_sequences.max() == 0:
                break

        if streamer:
            streamer.end()

        if generation_config.return_dict_in_generate:
            return GenerateDecoderOnlyOutput(
                sequences=input_ids,  # type: ignore
                scores=compute_steps,  # type: ignore
                logits=None,
                attentions=None,
                hidden_states=None,
                past_key_values=model_kwargs.get("past_key_values"),
            )
        return input_ids

    @torch.no_grad()
    def generate_speculative(
        self,
        input_ids: torch.Tensor,
        generation_config: Optional[GenerationConfig] = None,  # type: ignore
        tokenizer=None,
        streamer=None,
        continuous_compute=False,  # warm-start state / continuous CoT
        init_scale: float = 1.0,
        cache_lookup_strategy: str = "full",
        draft_steps=32,
        lookahead_for_draft=8,
        verification_threshold=1,
        num_steps: int = 32,  # intercept deliberately
        **model_kwargs,
    ) -> Union[torch.Tensor, dict[str, Any]]:
        """Batched speculative decoding with per-sequence acceptance."""
        assert lookahead_for_draft > 0
        pad_id = 65509
        model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
            input_ids, generation_config, cache_lookup_strategy, model_kwargs
        )
        stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
        unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)

        # Set up continuous compute if enabled
        if continuous_compute:
            embedded_inputs, _ = self.embed_inputs(input_ids)
            model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)

        tokens_generated = 0
        # Prefill cache with full num_steps
        if model_kwargs["past_key_values"].get_seq_length() == 0:
            model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
            outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
            next_token = self._sample_next_token(
                outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32), generation_config
            )
            input_ids = torch.cat([input_ids, next_token], dim=-1)
            tokens_generated += 1
            if streamer:
                streamer.put(next_token.cpu())
            model_kwargs["cache_position"] = torch.as_tensor(
                [model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
            )
            if continuous_compute:
                model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]

        # Generate tokens
        batch_size, prefix_seq_len = input_ids.shape[0], input_ids.shape[1]
        accepted_tokens = []

        while tokens_generated < max_new_tokens:
            ### Run the next draft ####
            drafted_inputs = input_ids.clone()
            current_len = input_ids.shape[1]

            for _ in range(lookahead_for_draft):
                model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
                outputs = self(**model_inputs, num_steps=draft_steps, init_scale=init_scale)
                next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32)
                next_token = self._sample_next_token(next_token_logits, generation_config)
                drafted_inputs = torch.cat([drafted_inputs, next_token], dim=-1)
                model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
                if continuous_compute:
                    model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]

            model_kwargs["past_key_values"].clear_last_k_entries(lookahead_for_draft)

            ## Verify drafted tokens ###
            model_kwargs["cache_position"] = torch.arange(
                current_len - 1, current_len + lookahead_for_draft - 1, device=input_ids.device
            )
            model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
            outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
            verified_next_token_preds = outputs.logits.argmax(dim=-1)

            if verification_threshold >= 1:
                mismatched_tokens = (
                    verified_next_token_preds[:, -lookahead_for_draft:] != drafted_inputs[:, current_len:]
                )
                not_all_matched, first_mismatch = torch.max(mismatched_tokens, dim=1)
            else:
                verified_logits = outputs.logits[:, -lookahead_for_draft:, :]
                verified_probs = F.softmax(verified_logits, dim=-1)
                drafted_token_probs = torch.gather(
                    verified_probs, -1, drafted_inputs[:, current_len:].unsqueeze(-1)
                ).squeeze(-1)
                max_probs = verified_probs.max(dim=-1)[0]
                verification_passed = drafted_token_probs >= verification_threshold * max_probs
                not_all_matched, first_mismatch = torch.max(~verification_passed, dim=1)

            # Per-sequence acceptance handling
            acceptance_lengths = torch.where(not_all_matched, first_mismatch, lookahead_for_draft)

            # Build next_tokens for each sequence
            next_tokens_batch = []
            for i in range(batch_size):
                seq_acceptance = acceptance_lengths[i].item()
                if not_all_matched[i] and seq_acceptance < lookahead_for_draft:
                    # Accept up to mismatch + sample final token
                    accepted_part = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
                    final_token_logits = outputs.logits[i : i + 1, seq_acceptance, :].to(copy=True, dtype=torch.float32)
                    final_token = self._sample_next_token(final_token_logits, generation_config)
                    seq_tokens = torch.cat([accepted_part, final_token], dim=-1) if seq_acceptance > 0 else final_token
                else:
                    # Accept all drafted tokens
                    seq_tokens = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
                next_tokens_batch.append(seq_tokens)

            # Clean up KV cache - only if any sequence had mismatches
            if not_all_matched.any():
                min_first_mismatch = first_mismatch.min().item()
                model_inputs["past_key_values"].clear_last_k_entries(lookahead_for_draft - min_first_mismatch - 1)

            # Concatenate accepted tokens to input_ids
            batch_accepted_counts = [tokens.shape[1] for tokens in next_tokens_batch]
            max_len = max(batch_accepted_counts)
            padded_tokens = [
                torch.cat(
                    [
                        tokens,
                        pad_id * torch.ones((1, max_len - tokens.shape[1]), dtype=tokens.dtype, device=tokens.device),
                    ],
                    dim=-1,
                )
                if tokens.shape[1] < max_len
                else tokens
                for tokens in next_tokens_batch
            ]
            next_tokens = torch.cat(padded_tokens, dim=0)
            input_ids = torch.cat([input_ids, next_tokens], dim=-1)

            accepted_tokens.append(batch_accepted_counts)
            tokens_generated += max(batch_accepted_counts)

            if streamer:
                streamer.put(next_tokens_batch[0].cpu())

            model_kwargs["cache_position"] = torch.as_tensor(
                [model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
            )
            if continuous_compute:
                model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]

            # Check stopping conditions
            if stop_tokens is not None:
                for i in range(batch_size):
                    if unfinished_sequences[i] and torch.isin(next_tokens_batch[i], stop_tokens).any():
                        unfinished_sequences[i] = 0
            if "stopping_criteria" in model_kwargs:
                unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
            if unfinished_sequences.max() == 0:
                break

        if streamer:
            streamer.end()

        # Cut off extraneous parts of the sequence per batch element
        if stop_tokens is not None:
            for i in range(batch_size):
                stop_positions = torch.isin(input_ids[i, prefix_seq_len:], stop_tokens).nonzero()
                if len(stop_positions) > 0:
                    input_ids[i, prefix_seq_len + stop_positions[0].item() + 1 :] = pad_id
        # Trim tensor to remove columns that are pad_id across all sequences
        non_pad_mask = input_ids != pad_id
        last_real_token = non_pad_mask.any(dim=0).nonzero()
        if len(last_real_token) > 0:
            input_ids = input_ids[:, : last_real_token[-1].item() + 1]

        if generation_config.return_dict_in_generate:
            return GenerateDecoderOnlyOutput(
                sequences=input_ids,  # type: ignore
                scores=accepted_tokens,  # type: ignore
                logits=None,
                attentions=None,
                hidden_states=None,
                past_key_values=model_kwargs.get("past_key_values"),
            )
        return input_ids

    def _get_stops(self, generation_config, tokenizer, model_kwargs):
        stop_tokens = {65504, 65505, 65508}  # begin_text, end_text, end_turn
        if generation_config.eos_token_id is not None:
            try:
                stop_tokens.update(generation_config.eos_token_id)
            except TypeError:
                stop_tokens.add(generation_config.eos_token_id)
        if "stopping_criteria" in model_kwargs and tokenizer is None:
            tokenizer = model_kwargs["stopping_criteria"][0].tokenizer
        if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
            for s in generation_config.stop_strings:
                token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
                stop_tokens.add(token_id)
        return torch.tensor(list(stop_tokens))

    def _sample_next_token(self, next_token_logits, generation_config):
        """Helper function to sample the next token."""
        if generation_config.do_sample:
            if generation_config.temperature:
                next_token_logits = next_token_logits.float() / generation_config.temperature

            probs = F.softmax(next_token_logits, dim=-1)

            # Apply top_k
            if generation_config.top_k:
                top_k_values, _ = torch.topk(probs, generation_config.top_k, dim=-1)
                min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
                probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)

            # Apply top_p (nucleus sampling)
            if generation_config.top_p:
                sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
                cumulative_probs = torch.cumsum(sorted_probs, dim=-1)

                # Create mask for probs to keep
                remove_indices = cumulative_probs > generation_config.top_p
                remove_indices[:, 0] = False  # Keep at least the top probability

                # Convert sorted indices mask back to original indices mask
                mask = torch.zeros_like(probs, dtype=torch.bool)
                for i in range(probs.shape[0]):
                    mask[i, sorted_indices[i, remove_indices[i]]] = True

                probs = torch.where(mask, torch.zeros_like(probs), probs)

            # Apply min_p
            if generation_config.min_p:
                max_probs = probs.max(dim=-1, keepdim=True)[0]
                min_p_threshold = generation_config.min_p * max_probs
                probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)

            # Renormalize probabilities
            probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)

            # Sample from the distribution
            return torch.multinomial(probs, num_samples=1)
        else:
            return torch.argmax(next_token_logits, dim=-1, keepdim=True)


################################ Model Utils #######################################################################


def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
    with torch.autocast("cuda", enabled=False):
        inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
        t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
        freqs = torch.outer(t, inv_freqs).float()
        return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
        # equivalent to
        # freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
        # cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)


def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
    with torch.autocast("cuda", enabled=False):
        qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float()  # cast to float32 for smooth skin
        rotated_qk_r2 = torch.stack(
            [
                qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
                qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
            ],
            -1,
        ).flatten(3)
        rotated_qk = rotated_qk_r2
        return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2)  # type: ignore


#################################### Adaptive Compute Exit Evaluators ##########################################

Exit = Tuple[torch.Tensor, Optional[CausalLMOutputRecurrentLatents], torch.Tensor]


class PerIterationExitEvaluator:
    """Base class for exit evaluators that check after each recurrent step."""

    def init(self, initial_latents: torch.Tensor):
        """Initialize evaluator state."""

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        """Returns (should_exit, outputs (or None), exit_values)"""
        raise NotImplementedError()


class NoOpExitEvaluator(PerIterationExitEvaluator):
    """Exit evaluator that never exits early."""

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        return (
            torch.zeros(latents.shape[0], device=latents.device, dtype=torch.bool),
            None,
            torch.zeros(latents.shape[0], device=latents.device),
        )


class EntropyDiffExitEvaluator(PerIterationExitEvaluator):
    """Exit based on change in output entropy."""

    def __init__(self, exit_threshold: Union[str, float] = "auto"):
        self.exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)

    def init(self, initial_latents: torch.Tensor):
        batch_size = initial_latents.shape[0]
        self.prev_entropy = torch.ones(batch_size, device=initial_latents.device) * 100.0

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        outputs = model.predict_from_latents(latents, **aux_inputs)
        logits: torch.Tensor = outputs.logits  # type: ignore
        probs = F.softmax(logits[:, -1, :], dim=-1)
        entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1)
        exit_values = (entropy - self.prev_entropy).abs()
        self.prev_entropy = entropy
        return exit_values < self.exit_threshold, outputs, exit_values


class LatentDiffExitEvaluator(PerIterationExitEvaluator):
    """Exit based on change in latent states."""

    def __init__(self, exit_threshold: Union[str, float] = "auto"):
        self.exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)

    def init(self, initial_latents: torch.Tensor):
        self.prev_latents = initial_latents.clone().detach()

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        exit_values = ((latents - self.prev_latents).norm(dim=-1) / latents.norm(dim=-1)).mean(dim=-1)
        self.prev_latents = latents.clone().detach()
        return exit_values < self.exit_threshold, None, exit_values


class KLExitEvaluator(PerIterationExitEvaluator):
    """Exit based on KL divergence between successive outputs."""

    def __init__(self, model: "RavenForCausalLM", exit_threshold: Union[str, float] = "auto"):
        self.exit_threshold = 0.001 if exit_threshold == "auto" else float(exit_threshold)
        self.V = model.config.padded_vocab_size

    def init(self, initial_latents: torch.Tensor):
        batch_size = initial_latents.shape[0]
        self.prev_log_probs = ((1 / self.V) * torch.ones(batch_size, self.V, device=initial_latents.device)).log()

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        outputs = model.predict_from_latents(latents, **aux_inputs)
        logits: torch.Tensor = outputs.logits  # type: ignore
        log_probs = F.log_softmax(logits[:, -1, :].float(), dim=-1)
        exit_values = F.kl_div(log_probs, self.prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
        self.prev_log_probs = log_probs
        return exit_values < self.exit_threshold, outputs, exit_values


class MinKLExitEvaluator(PerIterationExitEvaluator):
    """Exit based on min-p filtered KL divergence."""

    def __init__(self, model: "RavenForCausalLM", exit_threshold: Union[str, float] = "auto"):
        self.exit_threshold = 1e-5 if exit_threshold == "auto" else float(exit_threshold)
        self.V = model.config.padded_vocab_size

    def init(self, initial_latents: torch.Tensor):
        batch_size = initial_latents.shape[0]
        self.prev_log_probs = ((1 / self.V) * torch.ones(batch_size, self.V, device=initial_latents.device)).log()

    def _calc_minp_log_probs(self, logits: torch.Tensor) -> torch.Tensor:
        probs = F.softmax(logits[:, -1, :], dim=-1)
        max_probs = probs.max(dim=-1, keepdim=True)[0]
        probs_mask = probs < (0.1 * max_probs)
        masked_probs = probs
        masked_probs[probs_mask] = 1 / self.V
        probs = masked_probs / masked_probs.sum(dim=-1, keepdim=True)
        return probs.log()

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        outputs = model.predict_from_latents(latents, **aux_inputs)
        logits: torch.Tensor = outputs.logits  # type: ignore
        log_probs = self._calc_minp_log_probs(logits)
        exit_values = F.kl_div(log_probs, self.prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
        self.prev_log_probs = log_probs
        return exit_values < self.exit_threshold, outputs, exit_values


class ArgmaxStabilityExitEvaluator(PerIterationExitEvaluator):
    """Exit based on argmax stability over consecutive steps."""

    def __init__(self, exit_threshold: Union[str, int] = "auto"):
        self.exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)

    def init(self, initial_latents: torch.Tensor):
        batch_size = initial_latents.shape[0]
        self.prev_argmax = torch.ones(batch_size, dtype=torch.long, device=initial_latents.device) * -1
        self.stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=initial_latents.device)

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        outputs = model.predict_from_latents(latents, **aux_inputs)
        logits: torch.Tensor = outputs.logits  # type: ignore
        current_argmax = logits[:, -1, :].argmax(dim=-1)
        stable_for_n_steps = torch.where(
            current_argmax == self.prev_argmax, self.stable_for_n_steps + 1, torch.zeros_like(self.stable_for_n_steps)
        )
        exit_values = stable_for_n_steps
        self.prev_argmax = current_argmax
        self.stable_for_n_steps = stable_for_n_steps
        return exit_values >= self.exit_threshold, outputs, exit_values


class CosineExitEvaluator(PerIterationExitEvaluator):
    """Exit based on cosine similarity between successive latent states."""

    def __init__(self, exit_threshold: Union[str, float] = "auto"):
        self.exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)

    def init(self, initial_latents: torch.Tensor):
        self.prev_latents = initial_latents.clone().detach()

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        cosine_sim = (
            (latents * self.prev_latents).sum(dim=-1) / latents.norm(dim=-1) / self.prev_latents.norm(dim=-1)
        ).mean(dim=1)
        exit_values = 1 - cosine_sim
        self.prev_latents = latents.clone().detach()
        return exit_values < self.exit_threshold, None, exit_values


class NumStepsGenerator(PerIterationExitEvaluator):
    def __init__(self, steps_fn: Callable):
        self.steps_fn = steps_fn
        self.counter = 0
        self.target_steps = 0
        self.current_step = 0

    def init(self, initial_latents):
        self.target_steps = self.steps_fn(self.counter)
        self.counter += 1
        self.current_step = 0

    def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
        self.current_step += 1
        should_exit = self.current_step >= self.target_steps
        return (
            torch.full((latents.shape[0],), should_exit, dtype=torch.bool, device=latents.device),
            None,
            torch.zeros(latents.shape[0], device=latents.device),
        )


def get_adaptive_exit_evaluator(
    model: "RavenForCausalLM", criterion: str, exit_threshold: Union[str, float, int]
) -> PerIterationExitEvaluator:
    """Factory function to create appropriate exit evaluator."""
    if criterion == "entropy-diff":
        return EntropyDiffExitEvaluator(exit_threshold)
    elif criterion == "latent-diff":
        return LatentDiffExitEvaluator(exit_threshold)
    elif criterion == "cosine":
        return CosineExitEvaluator(exit_threshold)
    elif "kl" in criterion:
        if criterion == "minp-kl":
            return MinKLExitEvaluator(model, exit_threshold)
        else:
            return KLExitEvaluator(model, exit_threshold)
    elif criterion == "argmax-stability":
        return ArgmaxStabilityExitEvaluator(exit_threshold)  # type: ignore
    elif criterion == "none":
        return NoOpExitEvaluator()
    else:
        raise ValueError(f"Invalid adaptive compute strategy: {criterion}")


#################################### HF registration ############################################################

from transformers import AutoConfig, AutoModel, AutoModelForCausalLM

# New
RavenConfig.register_for_auto_class()

RavenForCausalLM.register_for_auto_class("AutoModel")
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")

# Old?
AutoConfig.register("huginn_raven", RavenConfig)
AutoModel.register(RavenConfig, RavenForCausalLM)
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)