File size: 87,968 Bytes
b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 a213de4 f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 a213de4 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 a213de4 f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 a213de4 b5b1f9d a213de4 b5b1f9d a213de4 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 b5b1f9d f3118d1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 |
"""Modeling file for HF compatibility and zero-shot experiments."""
import torch
import math
from torch import Tensor
from torch.nn.attention.flex_attention import create_block_mask, BlockMask, flex_attention
from torch.nn.attention import bias as attn_bias
from torch.utils.checkpoint import checkpoint
from dataclasses import dataclass
from typing import Union, Optional, Any, Tuple, Callable, List
from functools import cache, cached_property
from .raven_config_minimal import RavenConfig
from transformers.cache_utils import Cache, DynamicCache, StaticCache
###################### Huggingface Glue code I ##################################################################
from transformers import PreTrainedModel, GenerationMixin
from transformers.utils import ModelOutput
from transformers.generation.utils import GenerateDecoderOnlyOutput
import torch.nn.functional as F
from transformers import GenerationConfig
class RavenPreTrainedModel(PreTrainedModel):
config_class = RavenConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["SandwichBlock"]
_skip_keys_device_placement = ["past_key_values"]
_tied_weights_keys = ["lm_head.weight"]
_supports_flash_attn_2 = True
_supports_sdpa = True
_supports_cache_class = True
_supports_quantized_cache = False
_supports_static_cache = True
_tp_plan = {}
@cache
def _init_func(self, dim, num_layers):
return {
"std": math.sqrt(2 / (5 * dim)),
"out_proj": math.sqrt(2 / (5 * dim)) / math.sqrt(2 * num_layers),
"embedding": math.sqrt(2 / (5 * dim)),
"embed_scale": math.sqrt(dim),
}
@property
def emb_scale(self):
return self._init_func(self.config.n_embd, self.config.effective_expected_depth)["embed_scale"]
def _normal_(self, tensor, std):
return torch.nn.init.trunc_normal_(tensor, mean=0.0, std=std, a=-3 * std, b=3 * std)
@torch.no_grad()
def init_qkv(self, qkv_tensor, init_fn, qk_std, v_std, dim, head_dim):
s = qkv_tensor.shape[0]
n_kv_heads = (s - dim) // (2 * head_dim)
shapes = [dim, n_kv_heads * head_dim, n_kv_heads * head_dim]
Q, K, V = (
qkv_tensor.new_empty([shapes[0], dim]),
qkv_tensor.new_empty([shapes[1], dim]),
qkv_tensor.new_empty([shapes[2], dim]),
)
init_fn(Q, qk_std)
init_fn(K, qk_std)
init_fn(V, v_std)
qkv_tensor.data.copy_(torch.cat([Q, K, V], dim=0).contiguous())
@torch.no_grad()
def init_glu(self, glu_tensor, init_fn, w1_std, w2_std):
g, h = glu_tensor.shape
W1, W2 = (
glu_tensor.new_empty([g // 2, h]),
glu_tensor.new_empty([g // 2, h]),
)
init_fn(W1, w1_std)
init_fn(W2, w2_std)
glu_tensor.data.copy_(torch.cat([W1, W2], dim=0).contiguous())
@cached_property
def _full_name_of_module_lookup(self):
return {id(m): n for n, m in self.named_modules()}
@torch.no_grad()
def _init_weights(self, module):
_init_values = self._init_func(self.config.n_embd, self.config.effective_expected_depth)
name = self._full_name_of_module_lookup[id(module)]
if isinstance(module, RMSNorm):
torch.nn.init.ones_(module.weight)
elif isinstance(module, torch.nn.Linear):
if "Wqkv" in name:
self.init_qkv(
module.weight,
self._normal_,
float(_init_values["std"]),
float(_init_values["std"]),
self.config.n_embd,
self.config.head_dim,
)
elif "fc" in name:
self.init_glu(module.weight, self._normal_, float(_init_values["std"]), float(_init_values["out_proj"]))
elif "mlp.proj" in name or "attn.proj" in name:
self._normal_(module.weight, std=float(_init_values["out_proj"]))
elif "adapter" in name or "lm_head" in name:
self._normal_(module.weight, std=float(_init_values["std"]))
elif isinstance(module, torch.nn.Embedding):
self._normal_(module.weight, std=float(_init_values["embedding"]))
@dataclass
class CausalLMOutputRecurrentLatents(ModelOutput):
loss: Optional[torch.Tensor] = None
log_ppl: Optional[torch.Tensor] = None
logits: Optional[torch.Tensor] = None
past_key_values: Optional[Cache] = None
latent_states: Optional[torch.Tensor] = None
hidden_states: Optional[torch.Tensor] = None
attention_maps: Optional[dict[int, torch.Tensor]] = None
stats: Optional[dict] = None
###################### Minimal implementation from here ############################################################
class RMSNorm(torch.nn.Module):
"""Saner dtype handling and slightly better for fusion"""
def __init__(self, dim: int, eps: float = 1e-6):
super().__init__()
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
with torch.autocast(enabled=False, device_type=x.device.type if x.device.type != "meta" else "cuda"):
return self._norm(x.float()).type_as(x) * self.weight
def reset_parameters(self) -> None:
torch.nn.init.ones_(self.weight)
class HuginnDynamicCache(DynamicCache):
def __init__(self, lookup_strategy: str = "full") -> None:
super().__init__()
self._seen_tokens = 0
self.key_cache: dict[int, dict[int, torch.Tensor]] = {}
self.value_cache: dict[int, dict[int, torch.Tensor]] = {}
# structure: cache[index_of_layer_or_recurrent_step][index_in_sequence]
# the cache is held uncoalesced because certain recurrent steps may be missing for some sequence ids if using
# per-token adaptive compute. In those cases, the "lookup_strategy" determines how to proceed
# Also, It is critical that the head indices do not overlap with the recurrent iteration indices
self.lookup_strategy = lookup_strategy
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
step_idx_tensor: torch.Tensor,
lookup_strategy: Optional[str] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
step_idx: int = int(step_idx_tensor) # todo: fix dicts with tensor step_idx, currently the memberships fail
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
if "compress-" in self.lookup_strategy and step_idx > 1: # hardcode for current model!
if "compress-s" in self.lookup_strategy:
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
new_step_idx = (step_idx - 2) % compression_stage + 2
elif "compress-anchor" in self.lookup_strategy:
if step_idx - 2 < 4 * 8: # anchor onto first 8 recurrence steps # noqa: SIM108
new_step_idx = step_idx
else: # then re-use the next 4 KV states = one recurrence for all future recurrence
new_step_idx = 34 + (step_idx - 34) % 4
# print(step_idx, new_step_idx)
else: # compress-r
compression_stage = int(self.lookup_strategy.split("compress-")[1][1:])
new_step_idx = (step_idx - 2) // compression_stage + 2
step_idx = new_step_idx
# Init
if step_idx not in self.key_cache:
self.key_cache[step_idx] = {}
self.value_cache[step_idx] = {}
# Update the number of seen tokens, we assume that step_idx=0 (first prelude) is always hit
if step_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Add entries to cache
for idx, entry in enumerate(key_states.unbind(dim=-2)):
if "compress-" not in self.lookup_strategy:
assert step_idx < 0 or self._seen_tokens - key_states.shape[-2] + idx not in self.key_cache[step_idx]
self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
for idx, entry in enumerate(value_states.unbind(dim=-2)):
self.value_cache[step_idx][self._seen_tokens - value_states.shape[-2] + idx] = entry
# Materialize past state based on lookup strategy:
if len(self.key_cache[step_idx]) == self._seen_tokens or self.lookup_strategy == "full":
# All entries are present, materialize cache as normal
return (
torch.stack(list(self.key_cache[step_idx].values()), dim=-2),
torch.stack(list(self.value_cache[step_idx].values()), dim=-2),
)
else: # some entries were not previously computed
if lookup_strategy.startswith("latest-m4"):
latest_keys = []
latest_values = []
for token_pos in range(self._seen_tokens):
# For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
if step_idx >= 2:
# Find valid steps for this token position
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
else:
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
latest_keys.append(self.key_cache[max_step][token_pos])
latest_values.append(self.value_cache[max_step][token_pos])
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
elif lookup_strategy.startswith("available-m4"):
latest_keys = []
latest_values = []
for token_pos in range(self._seen_tokens):
if token_pos in self.key_cache[step_idx]:
step = step_idx
else:
# Find valid steps for this token position
valid_steps = [s for s in range(step_idx + 1) if token_pos in self.key_cache[s]]
step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
latest_keys.append(self.key_cache[step][token_pos])
latest_values.append(self.value_cache[step][token_pos])
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
elif lookup_strategy.startswith("always-last-m4"):
latest_keys = []
latest_values = []
for token_pos in range(self._seen_tokens):
# For steps >= 2, use modulo 4, this hard-codes the huginn block structure for now
if step_idx >= 2:
# Find valid steps for this token position
valid_steps = [key_step for key_step in self.key_cache if token_pos in self.key_cache[key_step]]
max_step = max([s for s in valid_steps if s >= 2 and s % 4 == step_idx % 4])
else:
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
latest_keys.append(self.key_cache[max_step][token_pos])
latest_values.append(self.value_cache[max_step][token_pos])
return torch.stack(latest_keys, dim=-2), torch.stack(latest_values, dim=-2)
elif lookup_strategy.startswith("skip"):
existing_keys = []
existing_values = []
for token_pos in range(self._seen_tokens):
if token_pos in self.key_cache[step_idx]:
existing_keys.append(self.key_cache[step_idx][token_pos])
existing_values.append(self.value_cache[step_idx][token_pos])
return torch.stack(existing_keys, dim=-2), torch.stack(existing_values, dim=-2)
elif lookup_strategy.startswith("randomized"): # sanity check
rand_keys = []
rand_values = []
for token_pos in range(self._seen_tokens):
if step_idx < 2: # For prelude steps
max_step = step_idx if token_pos in self.key_cache[step_idx] else 0
else: # Get all steps from same block position
curr_modulo = (step_idx - 2) % 4 + 2
valid_steps = [
s
for s in range(2, step_idx + 1)
if (s - 2) % 4 + 2 == curr_modulo and token_pos in self.key_cache[s]
]
max_step = valid_steps[torch.randint(len(valid_steps), (1,))]
rand_keys.append(self.key_cache[max_step][token_pos])
rand_values.append(self.value_cache[max_step][token_pos])
return torch.stack(rand_keys, dim=-2), torch.stack(rand_values, dim=-2)
else:
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
def reset(self) -> None:
"""Reset the cache state."""
self._seen_tokens = 0
self.key_cache.clear()
self.value_cache.clear()
def clear_last_k_entries(self, k: int = 0):
"""Partially clear cache."""
assert self._seen_tokens >= k
self._seen_tokens = self._seen_tokens - k
# self.key_cache[step_idx][self._seen_tokens - key_states.shape[-2] + idx] = entry
self.key_cache = {
step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
for step, cache in self.key_cache.items()
}
self.value_cache = {
step: {seq: seq_cache for seq, seq_cache in cache.items() if seq < self._seen_tokens}
for step, cache in self.value_cache.items()
}
def get_seq_length(self, step_idx: int = 0) -> int:
return self._seen_tokens
def get_memory_usage(self) -> float:
total_bytes = 0
# For each recurrent step/layer index
for step_idx in self.key_cache:
# Get the sequence cache for this step
key_seq_cache = self.key_cache[step_idx]
for seq_idx in key_seq_cache:
key_tensor = key_seq_cache[seq_idx]
# Add memory for of key tensors, assuming value is the same
total_bytes += key_tensor.nelement() * key_tensor.element_size()
return total_bytes * 2 / (1024 * 1024)
class HuginnStaticCache(Cache):
"""Static Cache for the recurrent model"""
is_compileable = False # this is todo
def __init__(
self,
max_length: int,
max_num_steps: int,
num_heads: int,
hidden_dim: int,
batch_size: int = 1,
lookup_strategy: str = "full",
device: Optional[Union[torch.device, str]] = None,
dtype: torch.dtype = torch.float32,
) -> None:
super().__init__()
self._seen_tokens = 0
self.max_length = max_length
self.lookup_strategy = lookup_strategy
# Adjust max_num_steps based on compression strategy
if "compress-" in lookup_strategy:
compression_stage = int(lookup_strategy.split("compress-")[1][1:])
if "compress-s" in lookup_strategy:
# For modulo compression (s), we need steps for 0,1 + compressed steps
self.max_num_steps = 4 + compression_stage
else:
# For relative compression, we need steps for 0,1 + compressed steps
self.max_num_steps = 4 + (max_num_steps - 4 + compression_stage - 1) // compression_stage
else:
self.max_num_steps = max_num_steps
# Pre-allocate cache tensors [steps, batch, heads, seq_len, head_dim]
device = torch.device(device) if device is not None else None
cache_shape = (self.max_num_steps, batch_size, num_heads, max_length, hidden_dim)
self.key_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
self.value_cache = torch.zeros(cache_shape, dtype=dtype, device=device)
self.valid_mask = torch.zeros((self.max_num_steps, max_length), dtype=torch.bool, device=device)
# Mark tensors as static for compile
torch._dynamo.mark_static_address(self.key_cache)
torch._dynamo.mark_static_address(self.value_cache)
torch._dynamo.mark_static_address(self.valid_mask)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
step_idx: torch.Tensor,
lookup_strategy: Optional[str] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
if step_idx == 0:
self._seen_tokens += key_states.shape[-2]
# Adjust step_idx for compression
lookup_strategy = self.lookup_strategy if lookup_strategy is None else lookup_strategy
if "compress-" in lookup_strategy and step_idx > 1:
compression_stage = int(lookup_strategy.split("compress-")[1][1:])
if "compress-s" in lookup_strategy:
step_idx = (step_idx - 2) % compression_stage + 2
else:
step_idx = (step_idx - 2) // compression_stage + 2
start_idx = self._seen_tokens - key_states.shape[-2]
indices = torch.arange(start_idx, start_idx + key_states.shape[-2], device=key_states.device)
self.key_cache[step_idx].index_copy_(2, indices, key_states)
self.value_cache[step_idx].index_copy_(2, indices, value_states)
self.valid_mask[step_idx, start_idx : start_idx + key_states.shape[-2]] = True
# Return based on lookup strategy
if lookup_strategy == "full":
return (
self.key_cache[step_idx, :, :, : self._seen_tokens],
self.value_cache[step_idx, :, :, : self._seen_tokens],
)
elif lookup_strategy.startswith("latest-m4"):
if step_idx >= 2:
pattern_steps = torch.arange(2, step_idx.item() + 1, 4, device=self.valid_mask.device)
pattern_valid = self.valid_mask[pattern_steps]
max_valid_step = pattern_steps[pattern_valid.to(torch.long).argmax(dim=0)]
return (
self.key_cache[max_valid_step, torch.arange(self._seen_tokens)],
self.value_cache[max_valid_step, torch.arange(self._seen_tokens)],
)
return self.key_cache[step_idx, :, :, : self._seen_tokens], self.value_cache[
step_idx, :, :, : self._seen_tokens
]
elif lookup_strategy == "skip":
valid_mask = self.valid_mask[step_idx, : self._seen_tokens]
return (
self.key_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
self.value_cache[step_idx, :, :, : self._seen_tokens][valid_mask],
)
elif lookup_strategy.startswith("randomized"):
if step_idx < 2:
max_step = step_idx
else:
curr_modulo = (step_idx - 2) % 4 + 2
valid_steps = (
torch.where(
(torch.arange(2, step_idx.item() + 1, device=self.valid_mask.device) - 2) % 4 + 2 == curr_modulo
)[0]
+ 2
)
rand_idx = torch.randint(len(valid_steps), (1,), device=valid_steps.device)
max_step = valid_steps[rand_idx]
return self.key_cache[max_step, : self._seen_tokens], self.value_cache[max_step, : self._seen_tokens]
else:
raise ValueError(f"Unknown lookup strategy: {lookup_strategy}")
def reset(self) -> None:
self._seen_tokens = 0
self.key_cache.zero_()
self.value_cache.zero_()
self.valid_mask.zero_()
def get_seq_length(self, step_idx: int = 0) -> int:
return self._seen_tokens
def get_memory_usage(self) -> float:
return (self.key_cache.nelement() + self.value_cache.nelement()) * self.key_cache.element_size() / (1024 * 1024)
ValidCache = HuginnDynamicCache | HuginnStaticCache
class CausalSelfAttention(torch.nn.Module):
def __init__(self, config: RavenConfig) -> None:
super().__init__()
self.config = config
self.n_head = config.num_attention_heads
self.n_kv_heads = config.num_key_value_heads
self.head_dim = config.n_embd // self.n_head
shape = (self.n_head + 2 * self.n_kv_heads) * self.head_dim
self.chunks = [config.n_embd, self.n_kv_heads * self.head_dim, self.n_kv_heads * self.head_dim]
self.Wqkv = torch.nn.Linear(config.n_embd, shape, bias=False)
if config.qk_bias:
self.qk_bias = torch.nn.Parameter(torch.zeros(2, 1, self.n_head, self.head_dim))
self.proj = torch.nn.Linear(config.n_embd, config.n_embd, bias=False)
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
block_idx: torch.Tensor,
mask: Optional[BlockMask] = None,
past_key_values: Optional[ValidCache] = None,
) -> Tensor:
B, S, E = x.shape # batch size, sequence length, embedding dimensionality (n_embd)
q, k, v = self.Wqkv(x).split(self.chunks, dim=2)
q = q.view(B, S, self.n_head, self.head_dim)
k = k.view(B, S, self.n_kv_heads, self.head_dim)
v = v.view(B, S, self.n_kv_heads, self.head_dim)
# bias?
if self.config.qk_bias:
q_bias, k_bias = self.qk_bias.split(1, dim=0)
q, k = (q + q_bias).to(q.dtype), (k + k_bias).to(q.dtype)
# apply rotary
q, k = apply_rotary_emb_complex_like(q, k, freqs_cis=freqs_cis)
q = q.transpose(1, 2) # (B, nh, S, hs)
k = k.transpose(1, 2)
v = v.transpose(1, 2)
if past_key_values is not None:
k, v = past_key_values.update(k, v, block_idx)
if mask is not None:
y: torch.Tensor = flex_attention(q, k, v, block_mask=mask) # type: ignore
else:
if q.shape[2] < k.shape[2]:
if q.shape[2] > 1:
bias = attn_bias.causal_lower_right(q.shape[2], k.shape[2])
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, bias, dropout_p=0.0)
else:
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=False)
else:
y = torch.nn.functional.scaled_dot_product_attention(q, k, v, dropout_p=0.0, is_causal=True)
y = y.transpose(1, 2).reshape(B, S, E).contiguous() # reshape is a view if possible (it mostly is)
return self.proj(y)
class GatedMLP(torch.nn.Module):
def __init__(self, config: RavenConfig, in_features: int = 0) -> None:
super().__init__()
in_features = config.n_embd if in_features == 0 else in_features
self.fc = torch.nn.Linear(in_features, config.intermediate_size * 2, bias=False)
self.proj = torch.nn.Linear(config.intermediate_size, config.n_embd, bias=False)
self.nonlin = torch.nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
# modified to single FC layer to improve parallelism
x_fc_1, x_fc_2 = self.fc(x).chunk(2, dim=-1)
x = self.nonlin(x_fc_1) * x_fc_2
return self.proj(x)
class SandwichBlock(torch.nn.Module):
expanded = False
def __init__(self, config: RavenConfig, layer_id: int) -> None:
super().__init__()
self.norm_1 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.attn = CausalSelfAttention(config)
self.norm_2 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.mlp = GatedMLP(config)
self.norm_3 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.norm_4 = RMSNorm(config.n_embd, eps=config.norm_eps)
self.layer_id = layer_id
def forward(
self,
x: Tensor,
freqs_cis: Tensor,
step_idx: int,
mask: Optional[BlockMask] = None,
past_key_values: Optional[ValidCache] = None,
) -> Tensor:
attn_out = self.attn(self.norm_1(x), freqs_cis, step_idx, mask, past_key_values)
x = self.norm_2(attn_out + x)
x = self.norm_4(self.mlp(self.norm_3(x)) + x)
return x
#################################### Main Model ##################################################################
class RavenForCausalLM(RavenPreTrainedModel, GenerationMixin):
freqs_cis: torch.Tensor
def __init__(
self,
config: RavenConfig,
) -> None:
super().__init__(config)
self.config = config
# Transformer layers
prelude = torch.nn.ModuleList(SandwichBlock(config, layer_id=i) for i in range(config.n_layers_in_prelude))
adapter = torch.nn.Linear(config.n_embd * 2, config.n_embd, bias=config.bias)
core_block = torch.nn.ModuleList(
SandwichBlock(config, layer_id=i + config.n_layers_in_prelude)
for i in range(config.n_layers_in_recurrent_block)
)
o = config.n_layers_in_prelude + config.n_layers_in_recurrent_block * config.mean_recurrence
coda = torch.nn.ModuleList(SandwichBlock(config, layer_id=i + o) for i in range(config.n_layers_in_coda))
self.transformer = torch.nn.ModuleDict(
dict(
wte=torch.nn.Embedding(config.padded_vocab_size, config.n_embd),
prelude=prelude,
adapter=adapter,
core_block=core_block,
coda=coda,
ln_f=RMSNorm(config.n_embd, eps=config.norm_eps), # used twice :>
)
)
# Head
self.lm_head = torch.nn.Linear(config.n_embd, config.padded_vocab_size, bias=False)
if self.config.tie_embeddings:
self.tie_weights()
# rope
self.register_buffer("freqs_cis", self._precompute_freqs_cis(), persistent=True)
self.gradient_checkpointing = False
# Call weight init through HF post init:
self.post_init()
def get_input_embeddings(self):
return self.transformer.wte
def get_output_embeddings(self):
return self.lm_head
def _precompute_freqs_cis(self):
return precompute_freqs_cis(
self.config.n_embd // self.config.num_attention_heads, self.config.block_size, self.config.rope_base, 1
)
def compile_mask(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[ValidCache] = None,
pad_token_id=65509,
) -> Optional[BlockMask]:
batch_size, seq_len = input_ids.shape[0], input_ids.shape[1]
# If no padding and no attention mask, no need for a mask
if attention_mask is None and (input_ids == pad_token_id).sum() == 0:
return None
if past_key_values is not None and seq_len == 1:
return None
# Get total sequence length including cache
cache_len = past_key_values.get_seq_length() if past_key_values is not None else 0
kv_length = cache_len + seq_len
if attention_mask is None:
def mask_mod(b, h, q_idx, kv_idx):
return q_idx >= kv_idx & (input_ids[b, kv_idx] != pad_token_id)
else:
def mask_mod(b, h, q_idx, kv_idx):
return (q_idx >= kv_idx) & (input_ids[b, kv_idx] != pad_token_id) & attention_mask[b, q_idx, kv_idx]
kv_length = past_key_values.get_seq_length() if past_key_values is not None else seq_len
if kv_length == 0:
kv_length = seq_len # prefill
block_mask = create_block_mask(
mask_mod,
B=batch_size,
H=None,
Q_LEN=seq_len,
KV_LEN=kv_length,
device=str(input_ids.device),
)
return block_mask
def forward(
self,
input_ids: torch.Tensor,
input_embeds: Optional[torch.Tensor] = None,
input_states: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None, # binary mask of shape q x kv, True=valid position
position_ids: Optional[torch.Tensor] = None,
labels: Optional[torch.Tensor] = None,
num_steps: Optional[torch.Tensor] = None,
past_key_values: Optional[ValidCache] = None,
output_details: dict = {
"return_logits": True,
"return_latents": True,
"return_head": False,
"return_stats": False,
},
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
init_scale: float = 1.0,
**kwargs,
) -> CausalLMOutputRecurrentLatents:
# Support multiple position formats:
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
if input_embeds is None:
input_embeds = self.transformer.wte(input_ids) # type: ignore # types broken in 2.6+
if self.emb_scale != 1:
input_embeds = input_embeds * self.emb_scale # type: ignore
if use_cache and past_key_values is None:
past_key_values = HuginnDynamicCache()
prepared_attn_mask = None # self.compile_mask(input_ids, attention_mask, past_key_values)
block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long) # count in tensors for compile
# Non-recurrent prelude
for block in self.transformer.prelude: # type: ignore # types broken in 2.6+
block_idx += 1
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
# Main recurrence
x, num_steps_no_grad, num_steps_with_grad, xk, block_idx = self.iterate_forward(
input_embeds, # type: ignore # mystery typing error
input_states,
freqs_cis,
block_idx,
prepared_attn_mask,
past_key_values,
num_steps,
init_scale,
)
latent_states = x.clone().detach()
# Coda layers
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
block_idx -= 1
x = block(x, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
x = self.transformer.ln_f(x) # type: ignore # types broken in 2.6+
# Prediction head, assuming labels really are labels and not equal to input_ids
if labels is not None:
logits = self.lm_head(x).float()
loss = torch.nn.functional.cross_entropy(
logits.view(-1, logits.shape[-1]), labels.view(-1), ignore_index=-100
)
log_ppl = loss.clone().detach().exp()
else:
logits = self.lm_head(x).float()
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
return CausalLMOutputRecurrentLatents(
loss=loss,
log_ppl=log_ppl,
logits=logits if output_details["return_logits"] else None,
past_key_values=past_key_values,
hidden_states=x if output_details["return_head"] else None,
latent_states=latent_states if output_details["return_latents"] else None,
stats=self.get_stats(logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad)
if output_details["return_stats"]
else None,
)
@torch._dynamo.disable(recursive=False) # type: ignore
def iterate_forward(
self,
input_embeds: torch.Tensor,
input_states: torch.Tensor,
freqs_cis,
block_idx: torch.Tensor,
mask: Optional[BlockMask],
past_key_values: Optional[ValidCache] = None,
num_steps: Optional[torch.Tensor] = None,
init_scale: float = 1.0,
):
x = xk = self.initialize_state(input_embeds, scale=init_scale) if input_states is None else input_states.clone()
if num_steps is None:
num_steps_no_grad, num_steps_with_grad = self.randomized_iteration_sampler() # type: ignore
elif hasattr(num_steps, "__len__") and len(num_steps) > 1:
num_steps_no_grad, num_steps_with_grad = num_steps
else:
num_steps_no_grad, num_steps_with_grad = num_steps, torch.tensor(0) if not x.is_meta else 0
with torch.no_grad():
# ultra annoying in ddp due to
# https://discuss.pytorch.org/t/does-distributeddataparallel-work-with-torch-no-grad-and-find-unused-parameters-false/122594
# for now running with find_unused_params=True enabled even though the graph structure is (technically) clear
# and all parameters are always used
for no_grad_step in range(num_steps_no_grad):
xk = x
x, block_idx = self.core_block_forward(
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, no_grad_step
)
for grad_step in range(num_steps_with_grad):
xk = x
x, block_idx = self._maybe_checkpoint_core_block(
xk, input_embeds, freqs_cis, mask, past_key_values, block_idx, num_steps_no_grad + grad_step
)
return self.transformer.ln_f(x), num_steps_no_grad, num_steps_with_grad, xk.detach(), block_idx # type: ignore # types broken in 2.6+
def core_block_forward(
self,
x,
input_embeds,
freqs_cis,
mask: Optional[BlockMask],
past_key_values,
block_idx: torch.Tensor,
current_step: int | Tensor,
):
block_idx = block_idx.detach().clone() # line only included to convince torch.checkpointing
x = self._maybe_inject_noise(x, current_step)
x = self.transformer.adapter(torch.cat([x, input_embeds.to(x.device)], dim=-1)) # type: ignore # types broken in 2.6+
for block in self.transformer.core_block: # type: ignore # types broken in 2.6+
block_idx += 1
x = block(x, freqs_cis, block_idx, mask, past_key_values)
return x, block_idx
@torch._dynamo.disable(recursive=False) # type: ignore
def randomized_iteration_sampler(self) -> tuple[torch.Tensor, torch.Tensor]:
"""Outputs are long tensors so that they can be passed through compiled functions"""
t = max(self.config.mean_recurrence - self.config.mean_backprop_depth, 0)
s = self.config.mean_backprop_depth
if torch.rand((1,)).is_meta: # annoying clause to make meta-tensor-based flop counting work
# these values are only the mean TFLOPs of the randomized sampler
# Note that this clause also breaks the contract, and returns ints in meta tensor mode
return t, s # type: ignore
if self.training:
sigma = 0.5
mu = math.log(t + s) - (sigma**2 / 2)
rate = torch.zeros((1,)).log_normal_(mean=mu, std=sigma)
p = torch.poisson(torch.tensor([rate], dtype=torch.float)) + 1
n = torch.clamp(p - s, min=0)
k = torch.as_tensor(torch.minimum(torch.as_tensor(s), p))
else:
n, k = torch.as_tensor(self.config.mean_recurrence), torch.as_tensor(0)
return n.to(dtype=torch.long), k.to(dtype=torch.long)
def initialize_state(self, input_embeds, scale: float = 1.0):
x = torch.randn_like(input_embeds)
std = self.config.init_values["std"] * scale
if std > 0:
torch.nn.init.trunc_normal_(x, mean=0.0, std=std, a=-3 * std, b=3 * std)
if self.emb_scale != 1:
x = x * self.emb_scale
else:
x.zero_()
return x
def _maybe_inject_noise(self, x, current_step, renorm=True):
if self.config.test_time_noise > 0:
n = self.config.test_time_noise * self.config.init_values["std"] * self.emb_scale
if self.config.test_time_noise_type == "geom":
step1 = torch.as_tensor(current_step + 1, device=x.device) # need to cast for compile
x = x * (1 - n / step1) + torch.randn_like(x) * n / step1
elif self.config.test_time_noise_type == "sqrt":
step1sqrt = torch.as_tensor(current_step + 1, device=x.device).sqrt() # need to cast for compile
x = x * (1 - n / step1sqrt) + torch.randn_like(x) * n / step1sqrt
elif self.config.test_time_noise_type == "line":
noise = max(n, (self.config.mean_recurrence - current_step) / self.config.mean_recurrence) # type: ignore
x = x * (1 - noise) + torch.randn_like(x) * noise
elif self.config.test_time_noise_type == "chi":
noise = 2 * torch.rand(1, device=x.device, dtype=x.dtype) * n
x = x * (1 - noise) + torch.randn_like(x) * noise
elif self.config.test_time_noise_type == "fixed":
x = x * (1 - n) + torch.randn_like(x) * n
else:
raise ValueError()
if renorm:
x = self.transformer.core_block[-1].norm_4(x) # type: ignore moduledict types still broken in pytorch
return x
""" ------------------ Alternative interfaces into the model forward ---------------------------------------- """
@torch.no_grad()
def iterate_one_step(
self,
input_embeds,
input_states,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
block_idx: torch.Tensor = torch.tensor(0, dtype=torch.long),
attention_mask: Optional[BlockMask] = None,
past_key_values: Optional[ValidCache] = None,
current_step: int = 0,
):
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_embeds.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
x, block_idx = self.core_block_forward(
input_states,
input_embeds,
freqs_cis,
attention_mask,
past_key_values,
block_idx,
current_step=current_step,
)
return x, block_idx, current_step + 1
def predict_from_latents(
self,
latents,
attention_mask: Optional[BlockMask] = None,
position_ids: Optional[torch.Tensor] = None,
cache_position: Optional[torch.Tensor] = None,
past_key_values: Optional[ValidCache] = None,
):
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : latents.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
x = self.transformer.ln_f(latents) # type: ignore # types broken in 2.6+
# Coda layers
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
block_idx -= 1
x = block(x, freqs_cis, block_idx, attention_mask, past_key_values)
x = self.transformer.ln_f(x) # type: ignore # types broken in 2.6+
logits = self.lm_head(x).float()
return CausalLMOutputRecurrentLatents(
loss=torch.as_tensor(0.0),
log_ppl=torch.as_tensor(0.0),
logits=logits,
past_key_values=past_key_values,
latent_states=x,
)
def embed_inputs(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
past_key_values: Optional[ValidCache] = None,
use_cache: bool = False,
cache_position: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
# Support multiple position formats:
if position_ids is None and cache_position is None:
freqs_cis = self.freqs_cis[:, : input_ids.shape[1]]
elif position_ids is not None:
freqs_cis = self.freqs_cis.index_select(1, position_ids.squeeze())
elif cache_position is not None:
freqs_cis = self.freqs_cis[:, cache_position]
input_embeds = self.transformer.wte(input_ids) # type: ignore # types broken in 2.6+
prepared_attn_mask = self.compile_mask(input_ids, attention_mask)
if self.emb_scale != 1:
input_embeds = input_embeds * self.emb_scale # type: ignore
if use_cache and past_key_values is None:
past_key_values = HuginnDynamicCache()
block_idx = torch.tensor(-1, device=torch.device("cpu"), dtype=torch.long) # count in tensors for compile
# Non-recurrent prelude
for block in self.transformer.prelude: # type: ignore # types broken in 2.6+
block_idx += 1
input_embeds = block(input_embeds, freqs_cis, block_idx, prepared_attn_mask, past_key_values)
return input_embeds, block_idx
@torch.no_grad()
def _prefill_with_varied_exit_steps(
self,
input_ids: torch.Tensor,
exit_evaluator: "PerIterationExitEvaluator",
past_key_values: Optional[ValidCache] = None,
init_scale: float = 1.0,
**kwargs,
) -> Tuple[torch.Tensor, ValidCache, List[int]]:
""" "
Note that this the opposite of a real prefill, it goes token-by token and can adaptively exit on each.
Use for scientific experiments.
"""
# currently the cache doesn't support batching with adaptive compute
assert input_ids.shape[0] == 1
if past_key_values is None:
past_key_values = HuginnDynamicCache()
attention_mask = None
output = torch.empty(
(input_ids.shape[0], 0, self.config.vocab_size), device=input_ids.device, dtype=torch.float
)
compute_steps = []
for pos in range(input_ids.shape[1]):
aux_inputs = {
"cache_position": pos,
"past_key_values": past_key_values,
"attention_mask": attention_mask,
}
freqs_cis = self.freqs_cis[:, pos]
embedded_inputs, block_idx = self.embed_inputs(input_ids[:, pos].unsqueeze(1), **aux_inputs)
current_latents = self.initialize_state(embedded_inputs, scale=init_scale)
exit_evaluator.init(current_latents)
# Main recurrence
for compute_step in range(self.config.mean_recurrence):
current_latents, block_idx, _ = self.iterate_one_step(
embedded_inputs,
current_latents,
block_idx=block_idx,
**aux_inputs,
current_step=compute_step,
)
new_exits, _, _ = exit_evaluator.check(self, current_latents, aux_inputs)
if new_exits.any():
break
compute_steps.append(compute_step + 1)
x = self.transformer.ln_f(current_latents) # type: ignore
# Coda layers
block_idx = torch.tensor(0, device=torch.device("cpu"), dtype=torch.long) # use negative indices for head
for block in self.transformer.coda: # type: ignore # types broken in 2.6+
block_idx -= 1
x = block(x, freqs_cis, block_idx, attention_mask, past_key_values)
x = self.transformer.ln_f(x) # type: ignore
logits = self.lm_head(x).float()
output = torch.cat([output, logits], dim=1)
return output, past_key_values, compute_steps # type: ignore
@torch.no_grad()
def forward_with_adaptive_compute(
self,
input_ids: torch.Tensor,
exit_evaluator: "PerIterationExitEvaluator",
labels: Optional[torch.Tensor] = None,
past_key_values: Optional[ValidCache] = None,
output_details: dict = {
"return_logits": True,
"return_latents": True,
"return_head": False,
"return_stats": False,
},
init_scale: float = 1.0,
**kwargs,
) -> CausalLMOutputRecurrentLatents:
"""This forward call does not make use of the causal nature of transformers, it runs token-by token!
Do not use this function for anything other than scientific experiments with adaptive compute!
"""
logits, past_key_values, compute_steps = self._prefill_with_varied_exit_steps(
input_ids, exit_evaluator, past_key_values, init_scale
)
if labels is not None:
loss = torch.nn.functional.cross_entropy(logits.view(-1, logits.shape[-1]), labels.view(-1))
log_ppl = loss.clone().detach()
else:
loss, log_ppl = torch.as_tensor(0.0), torch.as_tensor(0.0)
return CausalLMOutputRecurrentLatents(
loss=loss,
log_ppl=log_ppl,
logits=logits if output_details["return_logits"] else None,
past_key_values=None,
hidden_states=None,
latent_states=None,
attention_maps=None,
stats={"compute_steps": compute_steps},
)
def get_stats(self, logits, x, latent_states, xk, input_embeds, num_steps_no_grad, num_steps_with_grad):
probs = torch.softmax(logits.float(), dim=-1)
prob_entropy = torch.where(probs > 0, -probs * probs.log(), 0).sum(dim=-1)
residual_diff = (x - latent_states).norm(dim=-1)
rel_residual = residual_diff / latent_states.norm(dim=-1)
stats = {
"entropy": prob_entropy,
"residual_diff": residual_diff,
"rel_residual": rel_residual,
"num_steps_no_grad": num_steps_no_grad,
"num_steps_with_grad": num_steps_with_grad,
}
return stats
def _maybe_checkpoint_core_block(self, *args, **kwargs) -> tuple[Tensor, Tensor]:
if self.gradient_checkpointing:
return checkpoint(
self.core_block_forward,
*args,
use_reentrant=False,
preserve_rng_state=False,
determinism_check="none",
**kwargs,
) # type: ignore
else:
return self.core_block_forward(*args)
""""------------------------------------------Generation Utilities from here----------------------------------"""
def prepare_inputs_for_generation(
self,
input_ids: torch.Tensor,
past_key_values: Optional[Cache] = None,
attention_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
cache_position: Optional[torch.Tensor] = None,
cache_lookup_strategy: str = "full",
**kwargs,
):
model_inputs = {}
model_inputs["cache_position"] = cache_position
current_input_length = input_ids.shape[1]
if past_key_values is not None:
if not isinstance(past_key_values, (HuginnDynamicCache, HuginnStaticCache)):
assert past_key_values.get_seq_length() == 0 # only replace empty caches
# Need to use custom cache, detect and replace HF cache if generate injects it
if isinstance(past_key_values, StaticCache):
past_key_values = HuginnStaticCache(
max_length=getattr(self.generation_config, "max_length", self.config.block_size),
max_num_steps=4 + kwargs.get("num_steps", self.config.mean_recurrence) * 4,
num_heads=self.config.num_key_value_heads,
hidden_dim=self.config.n_embd // self.config.num_attention_heads,
dtype=torch.bfloat16,
device=input_ids.device,
lookup_strategy=cache_lookup_strategy,
)
else:
past_key_values = HuginnDynamicCache(lookup_strategy=cache_lookup_strategy)
model_inputs["past_key_values"] = past_key_values if kwargs["use_cache"] else None
input_ids = input_ids[:, cache_position] # type: ignore
model_inputs["input_ids"] = input_ids.clone(memory_format=torch.contiguous_format)
if cache_position is None:
position_ids = torch.arange(current_input_length)[None, :].to(input_ids.device)
model_inputs["position_ids"] = position_ids[:, -current_input_length:].clone(
memory_format=torch.contiguous_format
) # some form of position_ids is a critical argument for the model to correctly apply rope!
# forward all other entries
for key, value in kwargs.items():
if key not in model_inputs:
model_inputs[key] = value
return model_inputs
@torch.no_grad()
def generate(self, *args, **kwargs):
"""Dispatcher - use HF generate in all normal cases."""
self.generation_config = args[1] if len(args) > 1 else self.generation_config
if any(k in kwargs for k in ("criterion", "exit_threshold", "exit_evaluator")):
return self.generate_with_adaptive_compute(*args, **kwargs)
elif any(k in kwargs for k in ("draft_steps", "lookahead_for_draft", "verification_threshold")):
return self.generate_speculative(*args, **kwargs)
elif "continuous_compute" in kwargs:
return self.generate_minimal(*args, **kwargs)
else:
return super().generate(*args, **kwargs)
@torch.no_grad()
def _prep_generate_args(
self,
input_ids: torch.Tensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
cache_lookup_strategy: str = "full",
model_kwargs: dict = {},
):
# Setup
if generation_config is None:
generation_config: GenerationConfig = self.generation_config # type: ignore
if "max_new_tokens" in model_kwargs:
max_new_tokens = model_kwargs["max_new_tokens"]
if "max_length" in model_kwargs:
max_new_tokens = min(max_new_tokens, model_kwargs["max_length"] - input_ids.shape[1])
else:
max_length = model_kwargs.get("max_length", generation_config.max_length)
max_new_tokens = max_length - input_ids.shape[1]
if "cache_implementation" not in model_kwargs or model_kwargs["cache_implementation"] == "dynamic":
model_kwargs["past_key_values"] = HuginnDynamicCache(lookup_strategy=cache_lookup_strategy)
else:
model_kwargs["past_key_values"] = HuginnStaticCache(
max_length=max_length,
max_num_steps=4 + model_kwargs.get("num_steps", self.config.mean_recurrence) * 4,
num_heads=self.config.num_key_value_heads,
hidden_dim=self.config.n_embd // self.config.num_attention_heads,
batch_size=input_ids.shape[0],
dtype=torch.bfloat16,
device=input_ids.device,
lookup_strategy=cache_lookup_strategy,
)
model_kwargs["use_cache"] = True
model_kwargs = self._get_initial_cache_position(input_ids.shape[1], input_ids.device, model_kwargs)
return model_kwargs, generation_config, max_new_tokens
@torch.no_grad()
def generate_minimal(
self,
input_ids: torch.Tensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
tokenizer=None,
streamer=None,
continuous_compute=False, # warm-start state / continuous CoT
init_scale: float = 1.0,
cache_lookup_strategy: str = "full",
**model_kwargs,
) -> Union[torch.Tensor, dict[str, Any]]:
"""Minimal single-sequence generation. Template for more complicated generate tasks"""
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
input_ids, generation_config, cache_lookup_strategy, model_kwargs
)
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
# Set up continuous compute if enabled
if continuous_compute:
embedded_inputs, _ = self.embed_inputs(input_ids)
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
# Generate tokens
batch_size = input_ids.shape[0]
for _ in range(max_new_tokens):
# Forward pass
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self(**model_inputs, init_scale=init_scale)
# Get next token
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32, device=input_ids.device)
next_token = self._sample_next_token(next_token_logits, generation_config)
# Append token to sequence
input_ids = torch.cat([input_ids, next_token], dim=-1)
if streamer:
streamer.put(next_token.cpu())
# Update model kwargs
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs)
if continuous_compute:
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
if stop_tokens is not None:
for i in range(batch_size):
if unfinished_sequences[i] and next_token[i, 0].item() in stop_tokens:
unfinished_sequences[i] = 0
if "stopping_criteria" in model_kwargs:
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
if unfinished_sequences.max() == 0:
break
if streamer:
streamer.end()
if generation_config.return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids, # type: ignore
scores=None,
logits=None,
attentions=None,
hidden_states=None,
past_key_values=model_kwargs.get("past_key_values"),
)
return input_ids
@torch.no_grad()
def generate_with_adaptive_compute(
self,
input_ids: torch.Tensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
tokenizer=None,
streamer=None,
continuous_compute=False, # warm-start state / continuous CoT
criterion="none", # adaptive compute is off by default, turn on by choosing an exit criterion
exit_threshold: Union[str, float, int] = "auto",
init_scale: float = 1.0,
cache_lookup_strategy: str = "full",
do_not_exit_in_prefill: bool = False,
min_steps: int = 0,
check_criterion_every_n_steps=1,
exit_evaluator: "Optional[PerIterationExitEvaluator]" = None, # optional plugin of a new exit eval object
**model_kwargs,
) -> Union[torch.Tensor, GenerateDecoderOnlyOutput]:
"""
Generate tokens with adaptive compute. This is NOT the most efficient implementation.
For batches, on each token, we iterate until the entire batch finishes.
Note: While the method can be used batched, and will produce sensible results, this cannot be used to evaluate
the success of adaptive compute methods, which should only ever be benchmarked with batch_size=1.
This is because the KV-cache entries are necessarily batched and so contain entries equal to the sequence
with the largest number of steps in the whole batch, and these KV states, which would not have been computed
if there was only one (short compute) sequence in the batch, will be picked up by later compute steps,
making early exits look better than they are.
"""
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
input_ids, generation_config, cache_lookup_strategy, model_kwargs
)
max_steps = model_kwargs.get("num_steps", self.config.mean_recurrence)
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
logit_type = dict(copy=True, dtype=torch.float32, device=input_ids.device)
batch_size = input_ids.shape[0]
compute_steps = []
# Set up continuous compute if enabled
if continuous_compute:
embedded_inputs, _ = self.embed_inputs(input_ids)
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
# Track which sequences have finished (using unfinished_sequences to match generate_minimal)
unfinished_sequences = torch.ones(batch_size, dtype=torch.long, device=input_ids.device)
if exit_evaluator is None:
exit_evaluator = get_adaptive_exit_evaluator(self, criterion, exit_threshold)
# Generate tokens
for token_step_in_sequence in range(max_new_tokens):
# Adaptive compute forward
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
aux_inputs = {
k: model_inputs[k] for k in ["cache_position", "past_key_values", "attention_mask"] if k in model_inputs
}
embedded_inputs, block_idx = self.embed_inputs(model_inputs["input_ids"], **aux_inputs)
current_latents = (
self.initialize_state(embedded_inputs, scale=init_scale)
if not continuous_compute
else model_kwargs["input_states"]
)
# Initialize next_states for continuous compute
if continuous_compute:
next_states = current_latents[:, -1:, :].clone()
# Initialize criterion tracking for each sequence in batch
exit_values_per_seq = [[] for _ in range(batch_size)]
compute_steps_per_seq = [0] * batch_size
exit_reached = torch.zeros(batch_size, dtype=torch.bool, device=input_ids.device)
outputs, next_token_logits = None, None
exit_evaluator.init(current_latents)
# Iterate through compute steps
for compute_step in range(max_steps):
current_latents, block_idx, _ = self.iterate_one_step(
embedded_inputs,
current_latents,
block_idx=block_idx,
**aux_inputs,
current_step=compute_step,
)
# Skip checking exit conditions if min_steps not met, or not checking this step, or in prefill
if (
compute_step < min_steps
or (compute_step - min_steps) % check_criterion_every_n_steps != 0
or (do_not_exit_in_prefill and token_step_in_sequence == 0)
):
continue
# Otherwise check for new exits, potentially by evaluating the coda:
new_exits, outputs, exit_values = exit_evaluator.check(self, current_latents, aux_inputs)
# Record values and check exits for each sequence
for i in range(batch_size):
if not exit_reached[i] and unfinished_sequences[i].bool():
exit_values_per_seq[i].append(exit_values[i].item())
new_exits = new_exits & ~exit_reached & unfinished_sequences.bool()
if new_exits.any():
exit_reached = exit_reached | new_exits
if outputs is not None:
logits = outputs.logits
else:
# For latent-based criteria, compute outputs when we need them
outputs = self.predict_from_latents(current_latents, **aux_inputs)
logits = outputs.logits
if next_token_logits is None:
next_token_logits = logits[:, -1, :].to(**logit_type) # type: ignore
else:
next_token_logits[new_exits] = logits[new_exits, -1, :].to(**logit_type) # type: ignore
for i in range(batch_size):
if new_exits[i]:
compute_steps_per_seq[i] = compute_step + 1
# Update continuous compute states for newly exited sequences
if continuous_compute:
next_states[new_exits] = current_latents[new_exits, -1:, :]
# If all sequences have exited or finished, break early
if (exit_reached | ~unfinished_sequences.bool()).all():
break
# This else triggers if the for loop finishes without breaking:
else:
if outputs is None:
outputs = self.predict_from_latents(current_latents, **aux_inputs)
# For sequences that didn't exit early, use the final logits
if next_token_logits is None:
next_token_logits = outputs.logits[:, -1, :].to(**logit_type) # type: ignore
for i in range(batch_size):
compute_steps_per_seq[i] = max_steps
else:
for i in range(batch_size):
if not exit_reached[i] and unfinished_sequences[i].bool():
next_token_logits[i] = outputs.logits[i, -1, :].to(**logit_type) # type: ignore
compute_steps_per_seq[i] = max_steps
# Save latent states for continuous compute if enabled
if continuous_compute:
still_running = ~exit_reached & unfinished_sequences.bool()
next_states[still_running] = current_latents[still_running, -1:, :]
model_kwargs["input_states"] = next_states
# Record compute steps for this token generation
compute_steps.append([compute_steps_per_seq, exit_values_per_seq])
# Sample or select next token based on generation config
next_token = self._sample_next_token(next_token_logits, generation_config)
# Append token to sequence
input_ids = torch.cat([input_ids, next_token], dim=-1)
if streamer:
streamer.put(next_token.cpu())
# Update model kwargs for next iteration
model_kwargs = self._update_model_kwargs_for_generation(outputs, model_kwargs) # type: ignore
# Check for stop tokens and update unfinished sequences
for i in range(batch_size):
if (
unfinished_sequences[i].bool()
and stop_tokens is not None
and next_token[i, 0].item() in stop_tokens
):
unfinished_sequences[i] = 0
# Apply any custom stopping criteria
if "stopping_criteria" in model_kwargs:
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
# Break if all sequences are finished
if unfinished_sequences.max() == 0:
break
if streamer:
streamer.end()
if generation_config.return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids, # type: ignore
scores=compute_steps, # type: ignore
logits=None,
attentions=None,
hidden_states=None,
past_key_values=model_kwargs.get("past_key_values"),
)
return input_ids
@torch.no_grad()
def generate_speculative(
self,
input_ids: torch.Tensor,
generation_config: Optional[GenerationConfig] = None, # type: ignore
tokenizer=None,
streamer=None,
continuous_compute=False, # warm-start state / continuous CoT
init_scale: float = 1.0,
cache_lookup_strategy: str = "full",
draft_steps=32,
lookahead_for_draft=8,
verification_threshold=1,
num_steps: int = 32, # intercept deliberately
**model_kwargs,
) -> Union[torch.Tensor, dict[str, Any]]:
"""Batched speculative decoding with per-sequence acceptance."""
assert lookahead_for_draft > 0
pad_id = 65509
model_kwargs, generation_config, max_new_tokens = self._prep_generate_args(
input_ids, generation_config, cache_lookup_strategy, model_kwargs
)
stop_tokens = self._get_stops(generation_config, tokenizer, model_kwargs).to(input_ids.device)
unfinished_sequences = torch.ones(input_ids.shape[0], dtype=torch.long, device=input_ids.device)
# Set up continuous compute if enabled
if continuous_compute:
embedded_inputs, _ = self.embed_inputs(input_ids)
model_kwargs["input_states"] = self.initialize_state(embedded_inputs, scale=init_scale)
tokens_generated = 0
# Prefill cache with full num_steps
if model_kwargs["past_key_values"].get_seq_length() == 0:
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
next_token = self._sample_next_token(
outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32), generation_config
)
input_ids = torch.cat([input_ids, next_token], dim=-1)
tokens_generated += 1
if streamer:
streamer.put(next_token.cpu())
model_kwargs["cache_position"] = torch.as_tensor(
[model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
)
if continuous_compute:
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
# Generate tokens
batch_size, prefix_seq_len = input_ids.shape[0], input_ids.shape[1]
accepted_tokens = []
while tokens_generated < max_new_tokens:
### Run the next draft ####
drafted_inputs = input_ids.clone()
current_len = input_ids.shape[1]
for _ in range(lookahead_for_draft):
model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
outputs = self(**model_inputs, num_steps=draft_steps, init_scale=init_scale)
next_token_logits = outputs.logits[:, -1, :].to(copy=True, dtype=torch.float32)
next_token = self._sample_next_token(next_token_logits, generation_config)
drafted_inputs = torch.cat([drafted_inputs, next_token], dim=-1)
model_kwargs["cache_position"] = model_kwargs["cache_position"][-1:] + 1
if continuous_compute:
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
model_kwargs["past_key_values"].clear_last_k_entries(lookahead_for_draft)
## Verify drafted tokens ###
model_kwargs["cache_position"] = torch.arange(
current_len - 1, current_len + lookahead_for_draft - 1, device=input_ids.device
)
model_inputs = self.prepare_inputs_for_generation(drafted_inputs, **model_kwargs)
outputs = self(**model_inputs, num_steps=num_steps, init_scale=init_scale)
verified_next_token_preds = outputs.logits.argmax(dim=-1)
if verification_threshold >= 1:
mismatched_tokens = (
verified_next_token_preds[:, -lookahead_for_draft:] != drafted_inputs[:, current_len:]
)
not_all_matched, first_mismatch = torch.max(mismatched_tokens, dim=1)
else:
verified_logits = outputs.logits[:, -lookahead_for_draft:, :]
verified_probs = F.softmax(verified_logits, dim=-1)
drafted_token_probs = torch.gather(
verified_probs, -1, drafted_inputs[:, current_len:].unsqueeze(-1)
).squeeze(-1)
max_probs = verified_probs.max(dim=-1)[0]
verification_passed = drafted_token_probs >= verification_threshold * max_probs
not_all_matched, first_mismatch = torch.max(~verification_passed, dim=1)
# Per-sequence acceptance handling
acceptance_lengths = torch.where(not_all_matched, first_mismatch, lookahead_for_draft)
# Build next_tokens for each sequence
next_tokens_batch = []
for i in range(batch_size):
seq_acceptance = acceptance_lengths[i].item()
if not_all_matched[i] and seq_acceptance < lookahead_for_draft:
# Accept up to mismatch + sample final token
accepted_part = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
final_token_logits = outputs.logits[i : i + 1, seq_acceptance, :].to(copy=True, dtype=torch.float32)
final_token = self._sample_next_token(final_token_logits, generation_config)
seq_tokens = torch.cat([accepted_part, final_token], dim=-1) if seq_acceptance > 0 else final_token
else:
# Accept all drafted tokens
seq_tokens = drafted_inputs[i : i + 1, current_len : current_len + seq_acceptance]
next_tokens_batch.append(seq_tokens)
# Clean up KV cache - only if any sequence had mismatches
if not_all_matched.any():
min_first_mismatch = first_mismatch.min().item()
model_inputs["past_key_values"].clear_last_k_entries(lookahead_for_draft - min_first_mismatch - 1)
# Concatenate accepted tokens to input_ids
batch_accepted_counts = [tokens.shape[1] for tokens in next_tokens_batch]
max_len = max(batch_accepted_counts)
padded_tokens = [
torch.cat(
[
tokens,
pad_id * torch.ones((1, max_len - tokens.shape[1]), dtype=tokens.dtype, device=tokens.device),
],
dim=-1,
)
if tokens.shape[1] < max_len
else tokens
for tokens in next_tokens_batch
]
next_tokens = torch.cat(padded_tokens, dim=0)
input_ids = torch.cat([input_ids, next_tokens], dim=-1)
accepted_tokens.append(batch_accepted_counts)
tokens_generated += max(batch_accepted_counts)
if streamer:
streamer.put(next_tokens_batch[0].cpu())
model_kwargs["cache_position"] = torch.as_tensor(
[model_inputs["past_key_values"].get_seq_length()], device=input_ids.device
)
if continuous_compute:
model_kwargs["input_states"] = outputs.latent_states[:, -1:, :]
# Check stopping conditions
if stop_tokens is not None:
for i in range(batch_size):
if unfinished_sequences[i] and torch.isin(next_tokens_batch[i], stop_tokens).any():
unfinished_sequences[i] = 0
if "stopping_criteria" in model_kwargs:
unfinished_sequences = unfinished_sequences & ~model_kwargs["stopping_criteria"](input_ids, None)
if unfinished_sequences.max() == 0:
break
if streamer:
streamer.end()
# Cut off extraneous parts of the sequence per batch element
if stop_tokens is not None:
for i in range(batch_size):
stop_positions = torch.isin(input_ids[i, prefix_seq_len:], stop_tokens).nonzero()
if len(stop_positions) > 0:
input_ids[i, prefix_seq_len + stop_positions[0].item() + 1 :] = pad_id
# Trim tensor to remove columns that are pad_id across all sequences
non_pad_mask = input_ids != pad_id
last_real_token = non_pad_mask.any(dim=0).nonzero()
if len(last_real_token) > 0:
input_ids = input_ids[:, : last_real_token[-1].item() + 1]
if generation_config.return_dict_in_generate:
return GenerateDecoderOnlyOutput(
sequences=input_ids, # type: ignore
scores=accepted_tokens, # type: ignore
logits=None,
attentions=None,
hidden_states=None,
past_key_values=model_kwargs.get("past_key_values"),
)
return input_ids
def _get_stops(self, generation_config, tokenizer, model_kwargs):
stop_tokens = {65504, 65505, 65508} # begin_text, end_text, end_turn
if generation_config.eos_token_id is not None:
try:
stop_tokens.update(generation_config.eos_token_id)
except TypeError:
stop_tokens.add(generation_config.eos_token_id)
if "stopping_criteria" in model_kwargs and tokenizer is None:
tokenizer = model_kwargs["stopping_criteria"][0].tokenizer
if hasattr(generation_config, "stop_strings") and tokenizer and generation_config.stop_strings:
for s in generation_config.stop_strings:
token_id = tokenizer(s, add_special_tokens=False)["input_ids"][0]
stop_tokens.add(token_id)
return torch.tensor(list(stop_tokens))
def _sample_next_token(self, next_token_logits, generation_config):
"""Helper function to sample the next token."""
if generation_config.do_sample:
if generation_config.temperature:
next_token_logits = next_token_logits.float() / generation_config.temperature
probs = F.softmax(next_token_logits, dim=-1)
# Apply top_k
if generation_config.top_k:
top_k_values, _ = torch.topk(probs, generation_config.top_k, dim=-1)
min_values = top_k_values[:, -1].unsqueeze(-1).expand_as(probs)
probs = torch.where(probs < min_values, torch.zeros_like(probs), probs)
# Apply top_p (nucleus sampling)
if generation_config.top_p:
sorted_probs, sorted_indices = torch.sort(probs, descending=True, dim=-1)
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
# Create mask for probs to keep
remove_indices = cumulative_probs > generation_config.top_p
remove_indices[:, 0] = False # Keep at least the top probability
# Convert sorted indices mask back to original indices mask
mask = torch.zeros_like(probs, dtype=torch.bool)
for i in range(probs.shape[0]):
mask[i, sorted_indices[i, remove_indices[i]]] = True
probs = torch.where(mask, torch.zeros_like(probs), probs)
# Apply min_p
if generation_config.min_p:
max_probs = probs.max(dim=-1, keepdim=True)[0]
min_p_threshold = generation_config.min_p * max_probs
probs = torch.where(probs < min_p_threshold, torch.zeros_like(probs), probs)
# Renormalize probabilities
probs = probs / probs.sum(dim=-1, keepdim=True).clamp(min=1e-10)
# Sample from the distribution
return torch.multinomial(probs, num_samples=1)
else:
return torch.argmax(next_token_logits, dim=-1, keepdim=True)
################################ Model Utils #######################################################################
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0, condense_ratio: int = 1):
with torch.autocast("cuda", enabled=False):
inv_freqs = 1.0 / (theta ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
t = torch.arange(end, dtype=torch.float32, device=inv_freqs.device) / condense_ratio
freqs = torch.outer(t, inv_freqs).float()
return torch.stack([torch.cos(freqs)[None, :, None, :], torch.sin(freqs)[None, :, None, :]], dim=4)
# equivalent to
# freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
# cache = torch.stack([freqs_cis.real, freqs_cis.imag], dim=-1)
def apply_rotary_emb_complex_like(q: Tensor, k: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
with torch.autocast("cuda", enabled=False):
qk_r2 = torch.cat([q, k], dim=2).unflatten(dim=-1, sizes=(-1, 2)).float() # cast to float32 for smooth skin
rotated_qk_r2 = torch.stack(
[
qk_r2[..., 0] * freqs_cis[..., 0] - qk_r2[..., 1] * freqs_cis[..., 1],
qk_r2[..., 1] * freqs_cis[..., 0] + qk_r2[..., 0] * freqs_cis[..., 1],
],
-1,
).flatten(3)
rotated_qk = rotated_qk_r2
return torch.split(rotated_qk.type_as(q), q.shape[2], dim=2) # type: ignore
#################################### Adaptive Compute Exit Evaluators ##########################################
Exit = Tuple[torch.Tensor, Optional[CausalLMOutputRecurrentLatents], torch.Tensor]
class PerIterationExitEvaluator:
"""Base class for exit evaluators that check after each recurrent step."""
def init(self, initial_latents: torch.Tensor):
"""Initialize evaluator state."""
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
"""Returns (should_exit, outputs (or None), exit_values)"""
raise NotImplementedError()
class NoOpExitEvaluator(PerIterationExitEvaluator):
"""Exit evaluator that never exits early."""
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
return (
torch.zeros(latents.shape[0], device=latents.device, dtype=torch.bool),
None,
torch.zeros(latents.shape[0], device=latents.device),
)
class EntropyDiffExitEvaluator(PerIterationExitEvaluator):
"""Exit based on change in output entropy."""
def __init__(self, exit_threshold: Union[str, float] = "auto"):
self.exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
def init(self, initial_latents: torch.Tensor):
batch_size = initial_latents.shape[0]
self.prev_entropy = torch.ones(batch_size, device=initial_latents.device) * 100.0
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
outputs = model.predict_from_latents(latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
probs = F.softmax(logits[:, -1, :], dim=-1)
entropy = -torch.sum(probs * torch.log(probs + 1e-10), dim=-1)
exit_values = (entropy - self.prev_entropy).abs()
self.prev_entropy = entropy
return exit_values < self.exit_threshold, outputs, exit_values
class LatentDiffExitEvaluator(PerIterationExitEvaluator):
"""Exit based on change in latent states."""
def __init__(self, exit_threshold: Union[str, float] = "auto"):
self.exit_threshold = 0.03 if exit_threshold == "auto" else float(exit_threshold)
def init(self, initial_latents: torch.Tensor):
self.prev_latents = initial_latents.clone().detach()
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
exit_values = ((latents - self.prev_latents).norm(dim=-1) / latents.norm(dim=-1)).mean(dim=-1)
self.prev_latents = latents.clone().detach()
return exit_values < self.exit_threshold, None, exit_values
class KLExitEvaluator(PerIterationExitEvaluator):
"""Exit based on KL divergence between successive outputs."""
def __init__(self, model: "RavenForCausalLM", exit_threshold: Union[str, float] = "auto"):
self.exit_threshold = 0.001 if exit_threshold == "auto" else float(exit_threshold)
self.V = model.config.padded_vocab_size
def init(self, initial_latents: torch.Tensor):
batch_size = initial_latents.shape[0]
self.prev_log_probs = ((1 / self.V) * torch.ones(batch_size, self.V, device=initial_latents.device)).log()
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
outputs = model.predict_from_latents(latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
log_probs = F.log_softmax(logits[:, -1, :].float(), dim=-1)
exit_values = F.kl_div(log_probs, self.prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
self.prev_log_probs = log_probs
return exit_values < self.exit_threshold, outputs, exit_values
class MinKLExitEvaluator(PerIterationExitEvaluator):
"""Exit based on min-p filtered KL divergence."""
def __init__(self, model: "RavenForCausalLM", exit_threshold: Union[str, float] = "auto"):
self.exit_threshold = 1e-5 if exit_threshold == "auto" else float(exit_threshold)
self.V = model.config.padded_vocab_size
def init(self, initial_latents: torch.Tensor):
batch_size = initial_latents.shape[0]
self.prev_log_probs = ((1 / self.V) * torch.ones(batch_size, self.V, device=initial_latents.device)).log()
def _calc_minp_log_probs(self, logits: torch.Tensor) -> torch.Tensor:
probs = F.softmax(logits[:, -1, :], dim=-1)
max_probs = probs.max(dim=-1, keepdim=True)[0]
probs_mask = probs < (0.1 * max_probs)
masked_probs = probs
masked_probs[probs_mask] = 1 / self.V
probs = masked_probs / masked_probs.sum(dim=-1, keepdim=True)
return probs.log()
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
outputs = model.predict_from_latents(latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
log_probs = self._calc_minp_log_probs(logits)
exit_values = F.kl_div(log_probs, self.prev_log_probs, reduction="none", log_target=True).sum(dim=-1)
self.prev_log_probs = log_probs
return exit_values < self.exit_threshold, outputs, exit_values
class ArgmaxStabilityExitEvaluator(PerIterationExitEvaluator):
"""Exit based on argmax stability over consecutive steps."""
def __init__(self, exit_threshold: Union[str, int] = "auto"):
self.exit_threshold = 5 if exit_threshold == "auto" else int(exit_threshold)
def init(self, initial_latents: torch.Tensor):
batch_size = initial_latents.shape[0]
self.prev_argmax = torch.ones(batch_size, dtype=torch.long, device=initial_latents.device) * -1
self.stable_for_n_steps = torch.zeros(batch_size, dtype=torch.long, device=initial_latents.device)
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
outputs = model.predict_from_latents(latents, **aux_inputs)
logits: torch.Tensor = outputs.logits # type: ignore
current_argmax = logits[:, -1, :].argmax(dim=-1)
stable_for_n_steps = torch.where(
current_argmax == self.prev_argmax, self.stable_for_n_steps + 1, torch.zeros_like(self.stable_for_n_steps)
)
exit_values = stable_for_n_steps
self.prev_argmax = current_argmax
self.stable_for_n_steps = stable_for_n_steps
return exit_values >= self.exit_threshold, outputs, exit_values
class CosineExitEvaluator(PerIterationExitEvaluator):
"""Exit based on cosine similarity between successive latent states."""
def __init__(self, exit_threshold: Union[str, float] = "auto"):
self.exit_threshold = 1e-3 if exit_threshold == "auto" else float(exit_threshold)
def init(self, initial_latents: torch.Tensor):
self.prev_latents = initial_latents.clone().detach()
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
cosine_sim = (
(latents * self.prev_latents).sum(dim=-1) / latents.norm(dim=-1) / self.prev_latents.norm(dim=-1)
).mean(dim=1)
exit_values = 1 - cosine_sim
self.prev_latents = latents.clone().detach()
return exit_values < self.exit_threshold, None, exit_values
class NumStepsGenerator(PerIterationExitEvaluator):
def __init__(self, steps_fn: Callable):
self.steps_fn = steps_fn
self.counter = 0
self.target_steps = 0
self.current_step = 0
def init(self, initial_latents):
self.target_steps = self.steps_fn(self.counter)
self.counter += 1
self.current_step = 0
def check(self, model: "RavenForCausalLM", latents: torch.Tensor, aux_inputs: dict) -> Exit:
self.current_step += 1
should_exit = self.current_step >= self.target_steps
return (
torch.full((latents.shape[0],), should_exit, dtype=torch.bool, device=latents.device),
None,
torch.zeros(latents.shape[0], device=latents.device),
)
def get_adaptive_exit_evaluator(
model: "RavenForCausalLM", criterion: str, exit_threshold: Union[str, float, int]
) -> PerIterationExitEvaluator:
"""Factory function to create appropriate exit evaluator."""
if criterion == "entropy-diff":
return EntropyDiffExitEvaluator(exit_threshold)
elif criterion == "latent-diff":
return LatentDiffExitEvaluator(exit_threshold)
elif criterion == "cosine":
return CosineExitEvaluator(exit_threshold)
elif "kl" in criterion:
if criterion == "minp-kl":
return MinKLExitEvaluator(model, exit_threshold)
else:
return KLExitEvaluator(model, exit_threshold)
elif criterion == "argmax-stability":
return ArgmaxStabilityExitEvaluator(exit_threshold) # type: ignore
elif criterion == "none":
return NoOpExitEvaluator()
else:
raise ValueError(f"Invalid adaptive compute strategy: {criterion}")
#################################### HF registration ############################################################
from transformers import AutoConfig, AutoModel, AutoModelForCausalLM
# New
RavenConfig.register_for_auto_class()
RavenForCausalLM.register_for_auto_class("AutoModel")
RavenForCausalLM.register_for_auto_class("AutoModelForCausalLM")
# Old?
AutoConfig.register("huginn_raven", RavenConfig)
AutoModel.register(RavenConfig, RavenForCausalLM)
AutoModelForCausalLM.register(RavenConfig, RavenForCausalLM)
|