Add training info
Browse files
README.md
CHANGED
@@ -28,9 +28,52 @@ You can then run inference with this model like so:
|
|
28 |
from span_marker import SpanMarkerModel
|
29 |
|
30 |
# Download from the 🤗 Hub
|
31 |
-
model = SpanMarkerModel.from_pretrained("
|
32 |
# Run inference
|
33 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
34 |
```
|
35 |
|
36 |
-
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
from span_marker import SpanMarkerModel
|
29 |
|
30 |
# Download from the 🤗 Hub
|
31 |
+
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-large-verbs")
|
32 |
# Run inference
|
33 |
entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
|
34 |
```
|
35 |
|
36 |
+
See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
|
37 |
+
|
38 |
+
### Performance
|
39 |
+
|
40 |
+
It achieves the following results on the evaluation set:
|
41 |
+
- Loss: 0.0152
|
42 |
+
- Overall Precision: 0.9845
|
43 |
+
- Overall Recall: 0.9849
|
44 |
+
- Overall F1: 0.9847
|
45 |
+
- Overall Accuracy: 0.9962
|
46 |
+
|
47 |
+
## Training procedure
|
48 |
+
|
49 |
+
### Training hyperparameters
|
50 |
+
|
51 |
+
The following hyperparameters were used during training:
|
52 |
+
- learning_rate: 1e-05
|
53 |
+
- train_batch_size: 4
|
54 |
+
- eval_batch_size: 4
|
55 |
+
- seed: 42
|
56 |
+
- gradient_accumulation_steps: 2
|
57 |
+
- total_train_batch_size: 8
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- lr_scheduler_warmup_ratio: 0.1
|
61 |
+
- num_epochs: 3
|
62 |
+
|
63 |
+
### Training results
|
64 |
+
|
65 |
+
| Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
66 |
+
|:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
67 |
+
| 0.036 | 0.61 | 1000 | 0.0151 | 0.9911 | 0.9733 | 0.9821 | 0.9956 |
|
68 |
+
| 0.0126 | 1.22 | 2000 | 0.0131 | 0.9856 | 0.9864 | 0.9860 | 0.9965 |
|
69 |
+
| 0.0175 | 1.83 | 3000 | 0.0154 | 0.9735 | 0.9894 | 0.9814 | 0.9953 |
|
70 |
+
| 0.0115 | 2.45 | 4000 | 0.0172 | 0.9821 | 0.9871 | 0.9845 | 0.9962 |
|
71 |
+
|
72 |
+
|
73 |
+
### Framework versions
|
74 |
+
|
75 |
+
- Transformers 4.30.2
|
76 |
+
- Pytorch 2.0.1+cu118
|
77 |
+
- Datasets 2.13.1
|
78 |
+
- Tokenizers 0.13.3
|
79 |
+
- SpanMarker 1.2.3
|