tomaarsen HF staff commited on
Commit
7cbb7c3
·
1 Parent(s): 87fb8a8

Add training info

Browse files
Files changed (1) hide show
  1. README.md +45 -2
README.md CHANGED
@@ -28,9 +28,52 @@ You can then run inference with this model like so:
28
  from span_marker import SpanMarkerModel
29
 
30
  # Download from the 🤗 Hub
31
- model = SpanMarkerModel.from_pretrained("span_marker_model_name")
32
  # Run inference
33
  entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
34
  ```
35
 
36
- See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  from span_marker import SpanMarkerModel
29
 
30
  # Download from the 🤗 Hub
31
+ model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-xlm-roberta-large-verbs")
32
  # Run inference
33
  entities = model.predict("Amelia Earhart flew her single engine Lockheed Vega 5B across the Atlantic to Paris.")
34
  ```
35
 
36
+ See the [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) repository for documentation and additional information on this library.
37
+
38
+ ### Performance
39
+
40
+ It achieves the following results on the evaluation set:
41
+ - Loss: 0.0152
42
+ - Overall Precision: 0.9845
43
+ - Overall Recall: 0.9849
44
+ - Overall F1: 0.9847
45
+ - Overall Accuracy: 0.9962
46
+
47
+ ## Training procedure
48
+
49
+ ### Training hyperparameters
50
+
51
+ The following hyperparameters were used during training:
52
+ - learning_rate: 1e-05
53
+ - train_batch_size: 4
54
+ - eval_batch_size: 4
55
+ - seed: 42
56
+ - gradient_accumulation_steps: 2
57
+ - total_train_batch_size: 8
58
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
59
+ - lr_scheduler_type: linear
60
+ - lr_scheduler_warmup_ratio: 0.1
61
+ - num_epochs: 3
62
+
63
+ ### Training results
64
+
65
+ | Training Loss | Epoch | Step | Validation Loss | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
66
+ |:-------------:|:-----:|:----:|:---------------:|:-----------------:|:--------------:|:----------:|:----------------:|
67
+ | 0.036 | 0.61 | 1000 | 0.0151 | 0.9911 | 0.9733 | 0.9821 | 0.9956 |
68
+ | 0.0126 | 1.22 | 2000 | 0.0131 | 0.9856 | 0.9864 | 0.9860 | 0.9965 |
69
+ | 0.0175 | 1.83 | 3000 | 0.0154 | 0.9735 | 0.9894 | 0.9814 | 0.9953 |
70
+ | 0.0115 | 2.45 | 4000 | 0.0172 | 0.9821 | 0.9871 | 0.9845 | 0.9962 |
71
+
72
+
73
+ ### Framework versions
74
+
75
+ - Transformers 4.30.2
76
+ - Pytorch 2.0.1+cu118
77
+ - Datasets 2.13.1
78
+ - Tokenizers 0.13.3
79
+ - SpanMarker 1.2.3