File size: 7,810 Bytes
c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 f8169f2 c9235e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
---
language:
- en
license: cc-by-sa-4.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- tomaarsen/ner-orgs
metrics:
- precision
- recall
- f1
widget:
- text: In 2005, Shankel signed with Warner Chappell Music and while pursuing his
own projects created another joint venture, Shankel Songs and signed Ben Glover,
"Billboard "'s Christian writer of the Year, 2010, Joy Williams of The Civil Wars,
and, whom he also produced.
- text: In 2002, Rodríguez moved to Mississippi and to the NASA Stennis Space Center
as the Director of Center Operations and as a member of the Senior Executive Service
where he managed facility construction, security and other programs for 4,500
Stennis personnel.
- text: American Motors included Chinese officials as part of the negotiations establishing
Beijing Jeep (now Beijing Benz).
- text: La Señora () is a popular Spanish television period drama series set in the
1920s, produced by Diagonal TV for Televisión Española that was broadcast on La
1 of Televisión Española from 2008 to 2010.
- text: 'Not only did the Hungarian Ministry of Foreign Affairs approve Radio Free
Europe''s new location, but the Ministry of Telecommunications did something even
more amazing: "They found us four phone lines in central Budapest," says Geza
Szocs, a Radio Free Europe correspondent who helped organize the Budapest location.'
pipeline_tag: token-classification
co2_eq_emissions:
emissions: 67.93561835707102
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.52
hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: prajjwal1/bert-small
model-index:
- name: SpanMarker with prajjwal1/bert-small on FewNERD, CoNLL2003, and OntoNotes
v5
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: FewNERD, CoNLL2003, and OntoNotes v5
type: tomaarsen/ner-orgs
split: test
metrics:
- type: f1
value: 0.7547025470254703
name: F1
- type: precision
value: 0.7617641715116279
name: Precision
- type: recall
value: 0.7477706438380596
name: Recall
---
# SpanMarker with prajjwal1/bert-small on FewNERD, CoNLL2003, and OntoNotes v5
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co/datasets/tomaarsen/ner-orgs) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [prajjwal1/bert-small](https://huggingface.co/prajjwal1/bert-small)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [FewNERD, CoNLL2003, and OntoNotes v5](https://huggingface.co/datasets/tomaarsen/ner-orgs)
- **Language:** en
- **License:** cc-by-sa-4.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------|
| ORG | "Texas Chicken", "Church 's Chicken", "IAEA" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.7618 | 0.7478 | 0.7547 |
| ORG | 0.7618 | 0.7478 | 0.7547 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-small-orgs")
# Run inference
entities = model.predict("American Motors included Chinese officials as part of the negotiations establishing Beijing Jeep (now Beijing Benz).")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-bert-small-orgs")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-bert-small-orgs-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 23.5706 | 263 |
| Entities per sentence | 0 | 0.7865 | 39 |
### Training Hyperparameters
- learning_rate: 0.0001
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.5720 | 600 | 0.0076 | 0.7642 | 0.6630 | 0.7100 | 0.9656 |
| 1.1439 | 1200 | 0.0070 | 0.7705 | 0.7139 | 0.7411 | 0.9699 |
| 1.7159 | 1800 | 0.0067 | 0.7837 | 0.7231 | 0.7522 | 0.9709 |
| 2.2879 | 2400 | 0.0070 | 0.7768 | 0.7517 | 0.7640 | 0.9725 |
| 2.8599 | 3000 | 0.0068 | 0.7877 | 0.7374 | 0.7617 | 0.9718 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.068 kg of CO2
- **Hours Used**: 0.52 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.9.16
- SpanMarker: 1.5.1.dev
- Transformers: 4.30.0
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.0
- Tokenizers: 0.13.3
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |