tomaarsen HF staff commited on
Commit
35eb7c9
·
verified ·
1 Parent(s): c42da90

Add new CrossEncoder model

Browse files
Files changed (8) hide show
  1. README.md +431 -0
  2. config.json +37 -0
  3. merges.txt +0 -0
  4. model.safetensors +3 -0
  5. special_tokens_map.json +15 -0
  6. tokenizer.json +0 -0
  7. tokenizer_config.json +58 -0
  8. vocab.json +0 -0
README.md ADDED
@@ -0,0 +1,431 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - sentence-transformers
6
+ - cross-encoder
7
+ - text-classification
8
+ - generated_from_trainer
9
+ - dataset_size:942069
10
+ - loss:CrossEntropyLoss
11
+ base_model: distilbert/distilroberta-base
12
+ datasets:
13
+ - sentence-transformers/all-nli
14
+ pipeline_tag: text-classification
15
+ library_name: sentence-transformers
16
+ metrics:
17
+ - f1_macro
18
+ - f1_micro
19
+ - f1_weighted
20
+ co2_eq_emissions:
21
+ emissions: 5.804161792857238
22
+ energy_consumed: 0.01493216343846247
23
+ source: codecarbon
24
+ training_type: fine-tuning
25
+ on_cloud: false
26
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
27
+ ram_total_size: 31.777088165283203
28
+ hours_used: 0.058
29
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
30
+ model-index:
31
+ - name: CrossEncoder based on distilbert/distilroberta-base
32
+ results:
33
+ - task:
34
+ type: cross-encoder-classification
35
+ name: Cross Encoder Classification
36
+ dataset:
37
+ name: AllNLI dev
38
+ type: AllNLI-dev
39
+ metrics:
40
+ - type: f1_macro
41
+ value: 0.8495346395196971
42
+ name: F1 Macro
43
+ - type: f1_micro
44
+ value: 0.851
45
+ name: F1 Micro
46
+ - type: f1_weighted
47
+ value: 0.8494545162410544
48
+ name: F1 Weighted
49
+ - task:
50
+ type: cross-encoder-classification
51
+ name: Cross Encoder Classification
52
+ dataset:
53
+ name: AllNLI test
54
+ type: AllNLI-test
55
+ metrics:
56
+ - type: f1_macro
57
+ value: 0.7574494684363943
58
+ name: F1 Macro
59
+ - type: f1_micro
60
+ value: 0.7575803825803826
61
+ name: F1 Micro
62
+ - type: f1_weighted
63
+ value: 0.7582587136974347
64
+ name: F1 Weighted
65
+ ---
66
+
67
+ # CrossEncoder based on distilbert/distilroberta-base
68
+
69
+ This is a [Cross Encoder](https://www.sbert.net/docs/cross_encoder/usage/usage.html) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset using the [sentence-transformers](https://www.SBERT.net) library. It computes scores for pairs of texts, which can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
70
+
71
+ ## Model Details
72
+
73
+ ### Model Description
74
+ - **Model Type:** Cross Encoder
75
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
76
+ - **Maximum Sequence Length:** 514 tokens
77
+ - **Training Dataset:**
78
+ - [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
79
+ - **Language:** en
80
+ <!-- - **License:** Unknown -->
81
+
82
+ ### Model Sources
83
+
84
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
85
+ - **Documentation:** [Cross Encoder Documentation](https://www.sbert.net/docs/cross_encoder/usage/usage.html)
86
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
87
+ - **Hugging Face:** [Cross Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=cross-encoder)
88
+
89
+ ## Usage
90
+
91
+ ### Direct Usage (Sentence Transformers)
92
+
93
+ First install the Sentence Transformers library:
94
+
95
+ ```bash
96
+ pip install -U sentence-transformers
97
+ ```
98
+
99
+ Then you can load this model and run inference.
100
+ ```python
101
+ from sentence_transformers import CrossEncoder
102
+
103
+ # Download from the 🤗 Hub
104
+ model = CrossEncoder("tomaarsen/reranker-distilroberta-base-nli")
105
+ # Get scores for pairs...
106
+ pairs = [
107
+ ['Two women are embracing while holding to go packages.', 'The sisters are hugging goodbye while holding to go packages after just eating lunch.'],
108
+ ['Two women are embracing while holding to go packages.', 'Two woman are holding packages.'],
109
+ ['Two women are embracing while holding to go packages.', 'The men are fighting outside a deli.'],
110
+ ['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids in numbered jerseys wash their hands.'],
111
+ ['Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.', 'Two kids at a ballgame wash their hands.'],
112
+ ]
113
+ scores = model.predict(pairs)
114
+ print(scores.shape)
115
+ # [5]
116
+
117
+ # ... or rank different texts based on similarity to a single text
118
+ ranks = model.rank(
119
+ 'Two women are embracing while holding to go packages.',
120
+ [
121
+ 'The sisters are hugging goodbye while holding to go packages after just eating lunch.',
122
+ 'Two woman are holding packages.',
123
+ 'The men are fighting outside a deli.',
124
+ 'Two kids in numbered jerseys wash their hands.',
125
+ 'Two kids at a ballgame wash their hands.',
126
+ ]
127
+ )
128
+ # [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
129
+ ```
130
+
131
+ <!--
132
+ ### Direct Usage (Transformers)
133
+
134
+ <details><summary>Click to see the direct usage in Transformers</summary>
135
+
136
+ </details>
137
+ -->
138
+
139
+ <!--
140
+ ### Downstream Usage (Sentence Transformers)
141
+
142
+ You can finetune this model on your own dataset.
143
+
144
+ <details><summary>Click to expand</summary>
145
+
146
+ </details>
147
+ -->
148
+
149
+ <!--
150
+ ### Out-of-Scope Use
151
+
152
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
153
+ -->
154
+
155
+ ## Evaluation
156
+
157
+ ### Metrics
158
+
159
+ #### Cross Encoder Classification
160
+
161
+ * Datasets: `AllNLI-dev` and `AllNLI-test`
162
+ * Evaluated with [<code>CEClassificationEvaluator</code>](https://sbert.net/docs/package_reference/cross_encoder/evaluation.html#sentence_transformers.cross_encoder.evaluation.CEClassificationEvaluator)
163
+
164
+ | Metric | AllNLI-dev | AllNLI-test |
165
+ |:-------------|:-----------|:------------|
166
+ | **f1_macro** | **0.8495** | **0.7574** |
167
+ | f1_micro | 0.851 | 0.7576 |
168
+ | f1_weighted | 0.8495 | 0.7583 |
169
+
170
+ <!--
171
+ ## Bias, Risks and Limitations
172
+
173
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
174
+ -->
175
+
176
+ <!--
177
+ ### Recommendations
178
+
179
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
180
+ -->
181
+
182
+ ## Training Details
183
+
184
+ ### Training Dataset
185
+
186
+ #### all-nli
187
+
188
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
189
+ * Size: 942,069 training samples
190
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
191
+ * Approximate statistics based on the first 1000 samples:
192
+ | | premise | hypothesis | label |
193
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
194
+ | type | string | string | int |
195
+ | details | <ul><li>min: 23 characters</li><li>mean: 69.54 characters</li><li>max: 227 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 38.26 characters</li><li>max: 131 characters</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
196
+ * Samples:
197
+ | premise | hypothesis | label |
198
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
199
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
200
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
201
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
202
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
203
+
204
+ ### Evaluation Dataset
205
+
206
+ #### all-nli
207
+
208
+ * Dataset: [all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [d482672](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/d482672c8e74ce18da116f430137434ba2e52fab)
209
+ * Size: 19,657 evaluation samples
210
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
211
+ * Approximate statistics based on the first 1000 samples:
212
+ | | premise | hypothesis | label |
213
+ |:--------|:------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------|
214
+ | type | string | string | int |
215
+ | details | <ul><li>min: 16 characters</li><li>mean: 75.01 characters</li><li>max: 229 characters</li></ul> | <ul><li>min: 11 characters</li><li>mean: 37.66 characters</li><li>max: 116 characters</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
216
+ * Samples:
217
+ | premise | hypothesis | label |
218
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
219
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
220
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
221
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
222
+ * Loss: [<code>CrossEntropyLoss</code>](https://sbert.net/docs/package_reference/cross_encoder/losses.html#crossentropyloss)
223
+
224
+ ### Training Hyperparameters
225
+ #### Non-Default Hyperparameters
226
+
227
+ - `eval_strategy`: steps
228
+ - `per_device_train_batch_size`: 64
229
+ - `per_device_eval_batch_size`: 64
230
+ - `num_train_epochs`: 1
231
+ - `warmup_ratio`: 0.1
232
+ - `bf16`: True
233
+
234
+ #### All Hyperparameters
235
+ <details><summary>Click to expand</summary>
236
+
237
+ - `overwrite_output_dir`: False
238
+ - `do_predict`: False
239
+ - `eval_strategy`: steps
240
+ - `prediction_loss_only`: True
241
+ - `per_device_train_batch_size`: 64
242
+ - `per_device_eval_batch_size`: 64
243
+ - `per_gpu_train_batch_size`: None
244
+ - `per_gpu_eval_batch_size`: None
245
+ - `gradient_accumulation_steps`: 1
246
+ - `eval_accumulation_steps`: None
247
+ - `torch_empty_cache_steps`: None
248
+ - `learning_rate`: 5e-05
249
+ - `weight_decay`: 0.0
250
+ - `adam_beta1`: 0.9
251
+ - `adam_beta2`: 0.999
252
+ - `adam_epsilon`: 1e-08
253
+ - `max_grad_norm`: 1.0
254
+ - `num_train_epochs`: 1
255
+ - `max_steps`: -1
256
+ - `lr_scheduler_type`: linear
257
+ - `lr_scheduler_kwargs`: {}
258
+ - `warmup_ratio`: 0.1
259
+ - `warmup_steps`: 0
260
+ - `log_level`: passive
261
+ - `log_level_replica`: warning
262
+ - `log_on_each_node`: True
263
+ - `logging_nan_inf_filter`: True
264
+ - `save_safetensors`: True
265
+ - `save_on_each_node`: False
266
+ - `save_only_model`: False
267
+ - `restore_callback_states_from_checkpoint`: False
268
+ - `no_cuda`: False
269
+ - `use_cpu`: False
270
+ - `use_mps_device`: False
271
+ - `seed`: 42
272
+ - `data_seed`: None
273
+ - `jit_mode_eval`: False
274
+ - `use_ipex`: False
275
+ - `bf16`: True
276
+ - `fp16`: False
277
+ - `fp16_opt_level`: O1
278
+ - `half_precision_backend`: auto
279
+ - `bf16_full_eval`: False
280
+ - `fp16_full_eval`: False
281
+ - `tf32`: None
282
+ - `local_rank`: 0
283
+ - `ddp_backend`: None
284
+ - `tpu_num_cores`: None
285
+ - `tpu_metrics_debug`: False
286
+ - `debug`: []
287
+ - `dataloader_drop_last`: False
288
+ - `dataloader_num_workers`: 0
289
+ - `dataloader_prefetch_factor`: None
290
+ - `past_index`: -1
291
+ - `disable_tqdm`: False
292
+ - `remove_unused_columns`: True
293
+ - `label_names`: None
294
+ - `load_best_model_at_end`: False
295
+ - `ignore_data_skip`: False
296
+ - `fsdp`: []
297
+ - `fsdp_min_num_params`: 0
298
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
299
+ - `fsdp_transformer_layer_cls_to_wrap`: None
300
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
301
+ - `deepspeed`: None
302
+ - `label_smoothing_factor`: 0.0
303
+ - `optim`: adamw_torch
304
+ - `optim_args`: None
305
+ - `adafactor`: False
306
+ - `group_by_length`: False
307
+ - `length_column_name`: length
308
+ - `ddp_find_unused_parameters`: None
309
+ - `ddp_bucket_cap_mb`: None
310
+ - `ddp_broadcast_buffers`: False
311
+ - `dataloader_pin_memory`: True
312
+ - `dataloader_persistent_workers`: False
313
+ - `skip_memory_metrics`: True
314
+ - `use_legacy_prediction_loop`: False
315
+ - `push_to_hub`: False
316
+ - `resume_from_checkpoint`: None
317
+ - `hub_model_id`: None
318
+ - `hub_strategy`: every_save
319
+ - `hub_private_repo`: None
320
+ - `hub_always_push`: False
321
+ - `gradient_checkpointing`: False
322
+ - `gradient_checkpointing_kwargs`: None
323
+ - `include_inputs_for_metrics`: False
324
+ - `include_for_metrics`: []
325
+ - `eval_do_concat_batches`: True
326
+ - `fp16_backend`: auto
327
+ - `push_to_hub_model_id`: None
328
+ - `push_to_hub_organization`: None
329
+ - `mp_parameters`:
330
+ - `auto_find_batch_size`: False
331
+ - `full_determinism`: False
332
+ - `torchdynamo`: None
333
+ - `ray_scope`: last
334
+ - `ddp_timeout`: 1800
335
+ - `torch_compile`: False
336
+ - `torch_compile_backend`: None
337
+ - `torch_compile_mode`: None
338
+ - `dispatch_batches`: None
339
+ - `split_batches`: None
340
+ - `include_tokens_per_second`: False
341
+ - `include_num_input_tokens_seen`: False
342
+ - `neftune_noise_alpha`: None
343
+ - `optim_target_modules`: None
344
+ - `batch_eval_metrics`: False
345
+ - `eval_on_start`: False
346
+ - `use_liger_kernel`: False
347
+ - `eval_use_gather_object`: False
348
+ - `average_tokens_across_devices`: False
349
+ - `prompts`: None
350
+ - `batch_sampler`: batch_sampler
351
+ - `multi_dataset_batch_sampler`: proportional
352
+
353
+ </details>
354
+
355
+ ### Training Logs
356
+ | Epoch | Step | Training Loss | Validation Loss | AllNLI-dev_f1_macro | AllNLI-test_f1_macro |
357
+ |:------:|:----:|:-------------:|:---------------:|:-------------------:|:--------------------:|
358
+ | -1 | -1 | - | - | 0.1677 | - |
359
+ | 0.0640 | 100 | 1.0454 | - | - | - |
360
+ | 0.1280 | 200 | 0.7193 | - | - | - |
361
+ | 0.1919 | 300 | 0.6247 | - | - | - |
362
+ | 0.2559 | 400 | 0.5907 | - | - | - |
363
+ | 0.3199 | 500 | 0.5671 | 0.4578 | 0.8206 | - |
364
+ | 0.3839 | 600 | 0.5384 | - | - | - |
365
+ | 0.4479 | 700 | 0.5492 | - | - | - |
366
+ | 0.5118 | 800 | 0.5281 | - | - | - |
367
+ | 0.5758 | 900 | 0.5043 | - | - | - |
368
+ | 0.6398 | 1000 | 0.5243 | 0.4012 | 0.8415 | - |
369
+ | 0.7038 | 1100 | 0.4906 | - | - | - |
370
+ | 0.7678 | 1200 | 0.4877 | - | - | - |
371
+ | 0.8317 | 1300 | 0.4506 | - | - | - |
372
+ | 0.8957 | 1400 | 0.4728 | - | - | - |
373
+ | 0.9597 | 1500 | 0.4602 | 0.3731 | 0.8495 | - |
374
+ | -1 | -1 | - | - | - | 0.7574 |
375
+
376
+
377
+ ### Environmental Impact
378
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
379
+ - **Energy Consumed**: 0.015 kWh
380
+ - **Carbon Emitted**: 0.006 kg of CO2
381
+ - **Hours Used**: 0.058 hours
382
+
383
+ ### Training Hardware
384
+ - **On Cloud**: No
385
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
386
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
387
+ - **RAM Size**: 31.78 GB
388
+
389
+ ### Framework Versions
390
+ - Python: 3.11.6
391
+ - Sentence Transformers: 3.5.0.dev0
392
+ - Transformers: 4.49.0.dev0
393
+ - PyTorch: 2.5.0+cu121
394
+ - Accelerate: 1.3.0
395
+ - Datasets: 2.20.0
396
+ - Tokenizers: 0.21.0
397
+
398
+ ## Citation
399
+
400
+ ### BibTeX
401
+
402
+ #### Sentence Transformers
403
+ ```bibtex
404
+ @inproceedings{reimers-2019-sentence-bert,
405
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
406
+ author = "Reimers, Nils and Gurevych, Iryna",
407
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
408
+ month = "11",
409
+ year = "2019",
410
+ publisher = "Association for Computational Linguistics",
411
+ url = "https://arxiv.org/abs/1908.10084",
412
+ }
413
+ ```
414
+
415
+ <!--
416
+ ## Glossary
417
+
418
+ *Clearly define terms in order to be accessible across audiences.*
419
+ -->
420
+
421
+ <!--
422
+ ## Model Card Authors
423
+
424
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
425
+ -->
426
+
427
+ <!--
428
+ ## Model Card Contact
429
+
430
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
431
+ -->
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "id2label": {
14
+ "0": "LABEL_0",
15
+ "1": "LABEL_1",
16
+ "2": "LABEL_2"
17
+ },
18
+ "initializer_range": 0.02,
19
+ "intermediate_size": 3072,
20
+ "label2id": {
21
+ "LABEL_0": 0,
22
+ "LABEL_1": 1,
23
+ "LABEL_2": 2
24
+ },
25
+ "layer_norm_eps": 1e-05,
26
+ "max_position_embeddings": 514,
27
+ "model_type": "roberta",
28
+ "num_attention_heads": 12,
29
+ "num_hidden_layers": 6,
30
+ "pad_token_id": 1,
31
+ "position_embedding_type": "absolute",
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.49.0.dev0",
34
+ "type_vocab_size": 1,
35
+ "use_cache": true,
36
+ "vocab_size": 50265
37
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e33b6b773c61b3b40dbb6dfeb215aedba455122193b3e14f87abbfa418b6f723
3
+ size 328495356
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 514,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "tokenizer_class": "RobertaTokenizer",
56
+ "trim_offsets": true,
57
+ "unk_token": "<unk>"
58
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff