toinsson commited on
Commit
ebfa06f
·
1 Parent(s): 1afafe1

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1283.47 +/- 80.29
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac0f9408dcebda9773e19aca394f4153ec62257a8c3dfe2c4c7473193155c53b
3
+ size 129318
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1011f53640>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1011f536d0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1011f53760>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1011f537f0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f1011f53880>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f1011f53910>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1011f539a0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1011f53a30>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f1011f53ac0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1011f53b50>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1011f53be0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1011f53c70>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f101242b000>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674034217013153303,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOXQSz9Q9bQ+N+32PtJeZT9NLVY/zg1GwC37YT8omDe+XhAlv4m8CEBP5Js/dlEeQA87Zj8UX6u//Ca4uzs4oD8TYhq/C33jvU70lz4TUzbAeDozvzvdmT+BX2a/UKi8PnkMc7+on9O/kZO9Pn5tyL95cBI+FKadPka8BD+Ak6w/+D8cP61aS77PVZC8lxwrv2pgbD81twO9HJerPy+5GD7aGL2/IV3cPux7sr7Dx5G+8oc7v5E69r4o+xg/77kwPCSdnz/g9P48F6/gPiTXRUAZ0oY/RtcaP5GTvT5+bci/HVDEvnOYcD+mko6+lOCnPv0YpD5ryIK+TZZxPx6vVT9gwmU/oD6BPmRWVj9YUu2/ece/v8MDFD/RHPm+7J0swCGumL9wLxS9M+exvhGJkT9CP6w/pXbzvPlXIL8PsjM/GdKGP6if07+Rk70+iH0jP46Vhj8pB1M/EkCQvXtuIz81GMA/PvCQv/fsgT9zbSe/wmsUv13QjL+Of4k+KI3mP+Rehz8eq+6+TKPLvsDRHD8femm/7PFZvzVBAD8uRV+/G9ZXv3nShj0LxHe+CqANwHkMc79G1xo/kZO9Poh9Iz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADjyLi0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeloMPgAAAACgGfG/AAAAANF/wjwAAAAAB+DxPwAAAAA8Qfc8AAAAAOtS4z8AAAAAJDCCvQAAAABigOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEktgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO9+Cj4AAAAARDrgvwAAAAAkFAU+AAAAAJ8T5z8AAAAAVgmFvQAAAACy9tg/AAAAACYKMD0AAAAArff9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJN7FLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICz50M8AAAAAG1C/78AAAAA+G7ivAAAAAAQ0OI/AAAAAAaOqr0AAAAAzUbpPwAAAADoVfG8AAAAAFbF/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwT/m0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA64jSvQAAAAAtrd2/AAAAANwfzroAAAAAiBLgPwAAAAC/JPm8AAAAAI0x7D8AAAAA4jO8PQAAAAC229y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJG+yQ7tAs2MAWyUTegDjAF0lEdApEau/JvHcXV9lChoBkdAlWGxx95Qg2gHTegDaAhHQKRIEfgaWHF1fZQoaAZHQJUmR3PiT+xoB03oA2gIR0CkSInrIHTrdX2UKGgGR0CVHwBdUsFuaAdN6ANoCEdApEj3I2fkFXV9lChoBkdAj3Ik8ifQKWgHTegDaAhHQKRSEFmnO0N1fZQoaAZHQJAyN6Z6UqxoB03oA2gIR0CkU3PS+g14dX2UKGgGR0CRdguHvc8DaAdN6ANoCEdApFPuCkGiYnV9lChoBkdAim6Bz/6wdWgHTegDaAhHQKRUXsImgJ11fZQoaAZHQJMRNcu8K5VoB03oA2gIR0CkXVXFkxyodX2UKGgGR0CUIfzEaVD8aAdN6ANoCEdApF6/Wrfce3V9lChoBkdAk6nunAIppmgHTegDaAhHQKRfN+yZ8a51fZQoaAZHQJS3bnied09oB03oA2gIR0CkX6MmWt2cdX2UKGgGR0CZ99ASnLq2aAdN6ANoCEdApGhUlPacqnV9lChoBkdAlsyc/hVENWgHTegDaAhHQKRprul41P51fZQoaAZHQJTAHJtBOYZoB03oA2gIR0CkaieSr5qNdX2UKGgGR0CYDaxzJZGKaAdN6ANoCEdApGqPbmEGq3V9lChoBkdAloBeXZ5AyGgHTegDaAhHQKRzVFsHjZN1fZQoaAZHQJZhx1V5rxloB03oA2gIR0CkdKowdsBRdX2UKGgGR0CWE/uUUwi8aAdN6ANoCEdApHUfMW43FXV9lChoBkdAmOqam8/Uv2gHTegDaAhHQKR1iLncL0B1fZQoaAZHQJYRIsRQJoloB03oA2gIR0CkflyOq//OdX2UKGgGR0CW3HQ79ycTaAdN6ANoCEdApH+/J7sv7HV9lChoBkdAleiSWVu76GgHTegDaAhHQKSAO5J9RaZ1fZQoaAZHQJcnL+tKZlZoB03oA2gIR0CkgKbxusLfdX2UKGgGR0CTp9yI55quaAdN6ANoCEdApImvBtUGV3V9lChoBkdAl1cwaNuLrGgHTegDaAhHQKSLEMGX5WR1fZQoaAZHQGsnrXL/0d1oB03oA2gIR0Cki42D6FdtdX2UKGgGR0CUCqfdRBNVaAdN6ANoCEdApIv5sbedkXV9lChoBkdAlI9CA6Mir2gHTegDaAhHQKSU85QP7N11fZQoaAZHQJBEYnc+JP9oB03oA2gIR0Cklk3dj5KwdX2UKGgGR0CWkn6XjU/faAdN6ANoCEdApJbGIhyKenV9lChoBkdAk7hwF1SwW2gHTegDaAhHQKSXMfPomol1fZQoaAZHQJT8smE4//xoB03oA2gIR0CkoBdic5KfdX2UKGgGR0CTeAc8TzunaAdN6ANoCEdApKF+cz67/XV9lChoBkdAmLgnRgJC0GgHTegDaAhHQKSh+5VfeDZ1fZQoaAZHQHzOvp+tr9FoB03oA2gIR0Ckomhqj8DTdX2UKGgGR0CN4IX+l0o0aAdN6ANoCEdApKuRkZrHl3V9lChoBkdAl9vb3bmEG2gHTegDaAhHQKSs7iWmgrZ1fZQoaAZHQJXiWnhsImhoB03oA2gIR0CkrWjxLCemdX2UKGgGR0Bxpo2cawUyaAdNxgNoCEdApK11/rjYI3V9lChoBkdAjrHe4Cp3o2gHTegDaAhHQKS2ubobGWF1fZQoaAZHQJiTOkSElE9oB03oA2gIR0CkuCxVyWAxdX2UKGgGR0CH7XBAOavzaAdN6ANoCEdApLinZRKpUHV9lChoBkdAl1Y8guAZsWgHTegDaAhHQKS4tG8274B1fZQoaAZHQJctlgWrOqxoB03oA2gIR0CkwhmSyMUAdX2UKGgGR0CXUGoZydWiaAdN6ANoCEdApMOEu3+db3V9lChoBkdAk7RFPSDyv2gHTegDaAhHQKTD/3j+7191fZQoaAZHQJf1KwA2hqVoB03oA2gIR0CkxAvmYBvKdX2UKGgGR0CU4N3QUpNLaAdN6ANoCEdApM2c4cWCVnV9lChoBkdAlTqnvDxb0WgHTegDaAhHQKTPOiXY1511fZQoaAZHQJRiiL2pQ1toB03oA2gIR0Ckz8flyR0VdX2UKGgGR0CUhv6Gxlg/aAdN6ANoCEdApM/V+kP+XXV9lChoBkdAlkljTSb6QGgHTegDaAhHQKTaJpRoAXF1fZQoaAZHQJcFKrELpiZoB03oA2gIR0Ck26hbOeJ6dX2UKGgGR0CQztk2xY7raAdN6ANoCEdApNw+RmseXHV9lChoBkdAlA0W8AaNuWgHTegDaAhHQKTcS7aIval1fZQoaAZHQJkdycJ+lTFoB03oA2gIR0Ck5oH62v0RdX2UKGgGR0CV+bWa+evqaAdN6ANoCEdApOf/z+WGAXV9lChoBkdAl+bsn3L3bmgHTegDaAhHQKTog03Ov+x1fZQoaAZHQJTJxafSQYFoB03oA2gIR0Ck6JB2nsLOdX2UKGgGR0CQxNjZL7GeaAdN6ANoCEdApPIEzyjHn3V9lChoBkdAlM90c81XNmgHTegDaAhHQKTzbqVQhwF1fZQoaAZHQJMCoi0OVgRoB03oA2gIR0Ck8/Bltj0+dX2UKGgGR0CTX6rd30PIaAdN6ANoCEdApPQAtthuwXV9lChoBkdAkPofaYeDF2gHTegDaAhHQKT9wZuyeI51fZQoaAZHQJDp5k4FRpFoB03oA2gIR0Ck/xzhgmZ3dX2UKGgGR0CThYI5YHPeaAdN6ANoCEdApP+ftdAxBXV9lChoBkdAlAHOwTufEmgHTegDaAhHQKT/rRFZxJd1fZQoaAZHQJcOFo9LYf5oB03oA2gIR0ClCOeevpyIdX2UKGgGR0Cax0QEIPbxaAdN6ANoCEdApQpA6ZH/cXV9lChoBkdAl3T/ZVXFLmgHTegDaAhHQKUKq5e7cwh1fZQoaAZHQJpqrEQ5FPVoB03oA2gIR0ClCraS1Vo6dX2UKGgGR0CZS8QrMC9zaAdN6ANoCEdApRMj6ab4J3V9lChoBkdAl/5swpON52gHTegDaAhHQKUUih4+r2h1fZQoaAZHQJa5nNQj2SNoB03oA2gIR0ClFR8h1TzedX2UKGgGR0CYhXr2g398aAdN6ANoCEdApRUwMhHLBHV9lChoBkdAlcOBmCiAUmgHTegDaAhHQKUdyIGhVVB1fZQoaAZHQJdfCliz9jxoB03oA2gIR0ClHvkzO5avdX2UKGgGR0CXLN+NtIkJaAdN6ANoCEdApR9i2QXAM3V9lChoBkdAl2kYPGyX2WgHTegDaAhHQKUfbXQtz0Z1fZQoaAZHQJbqPZmI0qJoB03oA2gIR0ClJ1f7iyY5dX2UKGgGR0CUxcyQgcLjaAdN6ANoCEdApSiE9B8hLXV9lChoBkdAll4D5Kvmo2gHTegDaAhHQKUo7W3jMmp1fZQoaAZHQJeKjscABDJoB03oA2gIR0ClKPhje9BbdX2UKGgGR0CV4vt3wCr+aAdN6ANoCEdApTDvPzFuN3V9lChoBkdAl0sElRgqmWgHTegDaAhHQKUyMZeAuqZ1fZQoaAZHQJTRiiblRxdoB03oA2gIR0ClMpmXXyy2dX2UKGgGR0CVRBwvxpcpaAdN6ANoCEdApTKkKJEYwnV9lChoBkdAlzXVLvkRz2gHTegDaAhHQKU6ontv4ud1fZQoaAZHQJRSobNr0rdoB03oA2gIR0ClO8/U4JeFdX2UKGgGR0CUeKYjSofkaAdN6ANoCEdApTw3rt3OfXV9lChoBkdAlk8luWKMvWgHTegDaAhHQKU8Qkona391fZQoaAZHQJT23FtKqXFoB03oA2gIR0ClRDLIxQBQdX2UKGgGR0CU2pVxjriVaAdN6ANoCEdApUVhIjGDMHV9lChoBkdAlMUwymALA2gHTegDaAhHQKVFySoOx0N1fZQoaAZHQJMyNg6U7jloB03oA2gIR0ClRdOq3mV8dX2UKGgGR0CTNN1ZkkKNaAdN6ANoCEdApU5KK508vHV9lChoBkdAlMuMGs3hoGgHTegDaAhHQKVPhZVXFLp1fZQoaAZHQJL6/GlyimFoB03oA2gIR0ClT/8lgMMJdX2UKGgGR0CUvaMV1wHaaAdN6ANoCEdApVAMchkiEHVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6735a3fa9e73d96f923ea211f64f17cf7e61e89bca0a18faf34c393837f7a116
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a999a794f0a716bf4eee3d6b7f8efd5b5668ab379936ec3922934b6113bab9c
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-6.0.12-76060006-generic-x86_64-with-glibc2.27 # 202212290932~1671652965~22.04~452ea9d SMP PREEMPT_DYNAMIC Wed D
2
+ - Python: 3.10.8
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.3
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1011f53640>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1011f536d0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1011f53760>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1011f537f0>", "_build": "<function ActorCriticPolicy._build at 0x7f1011f53880>", "forward": "<function ActorCriticPolicy.forward at 0x7f1011f53910>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f1011f539a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1011f53a30>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1011f53ac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1011f53b50>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1011f53be0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1011f53c70>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f101242b000>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674034217013153303, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAOXQSz9Q9bQ+N+32PtJeZT9NLVY/zg1GwC37YT8omDe+XhAlv4m8CEBP5Js/dlEeQA87Zj8UX6u//Ca4uzs4oD8TYhq/C33jvU70lz4TUzbAeDozvzvdmT+BX2a/UKi8PnkMc7+on9O/kZO9Pn5tyL95cBI+FKadPka8BD+Ak6w/+D8cP61aS77PVZC8lxwrv2pgbD81twO9HJerPy+5GD7aGL2/IV3cPux7sr7Dx5G+8oc7v5E69r4o+xg/77kwPCSdnz/g9P48F6/gPiTXRUAZ0oY/RtcaP5GTvT5+bci/HVDEvnOYcD+mko6+lOCnPv0YpD5ryIK+TZZxPx6vVT9gwmU/oD6BPmRWVj9YUu2/ece/v8MDFD/RHPm+7J0swCGumL9wLxS9M+exvhGJkT9CP6w/pXbzvPlXIL8PsjM/GdKGP6if07+Rk70+iH0jP46Vhj8pB1M/EkCQvXtuIz81GMA/PvCQv/fsgT9zbSe/wmsUv13QjL+Of4k+KI3mP+Rehz8eq+6+TKPLvsDRHD8femm/7PFZvzVBAD8uRV+/G9ZXv3nShj0LxHe+CqANwHkMc79G1xo/kZO9Poh9Iz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADjyLi0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAeloMPgAAAACgGfG/AAAAANF/wjwAAAAAB+DxPwAAAAA8Qfc8AAAAAOtS4z8AAAAAJDCCvQAAAABigOq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAEktgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgO9+Cj4AAAAARDrgvwAAAAAkFAU+AAAAAJ8T5z8AAAAAVgmFvQAAAACy9tg/AAAAACYKMD0AAAAArff9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJN7FLYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICz50M8AAAAAG1C/78AAAAA+G7ivAAAAAAQ0OI/AAAAAAaOqr0AAAAAzUbpPwAAAADoVfG8AAAAAFbF/b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwT/m0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA64jSvQAAAAAtrd2/AAAAANwfzroAAAAAiBLgPwAAAAC/JPm8AAAAAI0x7D8AAAAA4jO8PQAAAAC229y/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJG+yQ7tAs2MAWyUTegDjAF0lEdApEau/JvHcXV9lChoBkdAlWGxx95Qg2gHTegDaAhHQKRIEfgaWHF1fZQoaAZHQJUmR3PiT+xoB03oA2gIR0CkSInrIHTrdX2UKGgGR0CVHwBdUsFuaAdN6ANoCEdApEj3I2fkFXV9lChoBkdAj3Ik8ifQKWgHTegDaAhHQKRSEFmnO0N1fZQoaAZHQJAyN6Z6UqxoB03oA2gIR0CkU3PS+g14dX2UKGgGR0CRdguHvc8DaAdN6ANoCEdApFPuCkGiYnV9lChoBkdAim6Bz/6wdWgHTegDaAhHQKRUXsImgJ11fZQoaAZHQJMRNcu8K5VoB03oA2gIR0CkXVXFkxyodX2UKGgGR0CUIfzEaVD8aAdN6ANoCEdApF6/Wrfce3V9lChoBkdAk6nunAIppmgHTegDaAhHQKRfN+yZ8a51fZQoaAZHQJS3bnied09oB03oA2gIR0CkX6MmWt2cdX2UKGgGR0CZ99ASnLq2aAdN6ANoCEdApGhUlPacqnV9lChoBkdAlsyc/hVENWgHTegDaAhHQKRprul41P51fZQoaAZHQJTAHJtBOYZoB03oA2gIR0CkaieSr5qNdX2UKGgGR0CYDaxzJZGKaAdN6ANoCEdApGqPbmEGq3V9lChoBkdAloBeXZ5AyGgHTegDaAhHQKRzVFsHjZN1fZQoaAZHQJZhx1V5rxloB03oA2gIR0CkdKowdsBRdX2UKGgGR0CWE/uUUwi8aAdN6ANoCEdApHUfMW43FXV9lChoBkdAmOqam8/Uv2gHTegDaAhHQKR1iLncL0B1fZQoaAZHQJYRIsRQJoloB03oA2gIR0CkflyOq//OdX2UKGgGR0CW3HQ79ycTaAdN6ANoCEdApH+/J7sv7HV9lChoBkdAleiSWVu76GgHTegDaAhHQKSAO5J9RaZ1fZQoaAZHQJcnL+tKZlZoB03oA2gIR0CkgKbxusLfdX2UKGgGR0CTp9yI55quaAdN6ANoCEdApImvBtUGV3V9lChoBkdAl1cwaNuLrGgHTegDaAhHQKSLEMGX5WR1fZQoaAZHQGsnrXL/0d1oB03oA2gIR0Cki42D6FdtdX2UKGgGR0CUCqfdRBNVaAdN6ANoCEdApIv5sbedkXV9lChoBkdAlI9CA6Mir2gHTegDaAhHQKSU85QP7N11fZQoaAZHQJBEYnc+JP9oB03oA2gIR0Cklk3dj5KwdX2UKGgGR0CWkn6XjU/faAdN6ANoCEdApJbGIhyKenV9lChoBkdAk7hwF1SwW2gHTegDaAhHQKSXMfPomol1fZQoaAZHQJT8smE4//xoB03oA2gIR0CkoBdic5KfdX2UKGgGR0CTeAc8TzunaAdN6ANoCEdApKF+cz67/XV9lChoBkdAmLgnRgJC0GgHTegDaAhHQKSh+5VfeDZ1fZQoaAZHQHzOvp+tr9FoB03oA2gIR0Ckomhqj8DTdX2UKGgGR0CN4IX+l0o0aAdN6ANoCEdApKuRkZrHl3V9lChoBkdAl9vb3bmEG2gHTegDaAhHQKSs7iWmgrZ1fZQoaAZHQJXiWnhsImhoB03oA2gIR0CkrWjxLCemdX2UKGgGR0Bxpo2cawUyaAdNxgNoCEdApK11/rjYI3V9lChoBkdAjrHe4Cp3o2gHTegDaAhHQKS2ubobGWF1fZQoaAZHQJiTOkSElE9oB03oA2gIR0CkuCxVyWAxdX2UKGgGR0CH7XBAOavzaAdN6ANoCEdApLinZRKpUHV9lChoBkdAl1Y8guAZsWgHTegDaAhHQKS4tG8274B1fZQoaAZHQJctlgWrOqxoB03oA2gIR0CkwhmSyMUAdX2UKGgGR0CXUGoZydWiaAdN6ANoCEdApMOEu3+db3V9lChoBkdAk7RFPSDyv2gHTegDaAhHQKTD/3j+7191fZQoaAZHQJf1KwA2hqVoB03oA2gIR0CkxAvmYBvKdX2UKGgGR0CU4N3QUpNLaAdN6ANoCEdApM2c4cWCVnV9lChoBkdAlTqnvDxb0WgHTegDaAhHQKTPOiXY1511fZQoaAZHQJRiiL2pQ1toB03oA2gIR0Ckz8flyR0VdX2UKGgGR0CUhv6Gxlg/aAdN6ANoCEdApM/V+kP+XXV9lChoBkdAlkljTSb6QGgHTegDaAhHQKTaJpRoAXF1fZQoaAZHQJcFKrELpiZoB03oA2gIR0Ck26hbOeJ6dX2UKGgGR0CQztk2xY7raAdN6ANoCEdApNw+RmseXHV9lChoBkdAlA0W8AaNuWgHTegDaAhHQKTcS7aIval1fZQoaAZHQJkdycJ+lTFoB03oA2gIR0Ck5oH62v0RdX2UKGgGR0CV+bWa+evqaAdN6ANoCEdApOf/z+WGAXV9lChoBkdAl+bsn3L3bmgHTegDaAhHQKTog03Ov+x1fZQoaAZHQJTJxafSQYFoB03oA2gIR0Ck6JB2nsLOdX2UKGgGR0CQxNjZL7GeaAdN6ANoCEdApPIEzyjHn3V9lChoBkdAlM90c81XNmgHTegDaAhHQKTzbqVQhwF1fZQoaAZHQJMCoi0OVgRoB03oA2gIR0Ck8/Bltj0+dX2UKGgGR0CTX6rd30PIaAdN6ANoCEdApPQAtthuwXV9lChoBkdAkPofaYeDF2gHTegDaAhHQKT9wZuyeI51fZQoaAZHQJDp5k4FRpFoB03oA2gIR0Ck/xzhgmZ3dX2UKGgGR0CThYI5YHPeaAdN6ANoCEdApP+ftdAxBXV9lChoBkdAlAHOwTufEmgHTegDaAhHQKT/rRFZxJd1fZQoaAZHQJcOFo9LYf5oB03oA2gIR0ClCOeevpyIdX2UKGgGR0Cax0QEIPbxaAdN6ANoCEdApQpA6ZH/cXV9lChoBkdAl3T/ZVXFLmgHTegDaAhHQKUKq5e7cwh1fZQoaAZHQJpqrEQ5FPVoB03oA2gIR0ClCraS1Vo6dX2UKGgGR0CZS8QrMC9zaAdN6ANoCEdApRMj6ab4J3V9lChoBkdAl/5swpON52gHTegDaAhHQKUUih4+r2h1fZQoaAZHQJa5nNQj2SNoB03oA2gIR0ClFR8h1TzedX2UKGgGR0CYhXr2g398aAdN6ANoCEdApRUwMhHLBHV9lChoBkdAlcOBmCiAUmgHTegDaAhHQKUdyIGhVVB1fZQoaAZHQJdfCliz9jxoB03oA2gIR0ClHvkzO5avdX2UKGgGR0CXLN+NtIkJaAdN6ANoCEdApR9i2QXAM3V9lChoBkdAl2kYPGyX2WgHTegDaAhHQKUfbXQtz0Z1fZQoaAZHQJbqPZmI0qJoB03oA2gIR0ClJ1f7iyY5dX2UKGgGR0CUxcyQgcLjaAdN6ANoCEdApSiE9B8hLXV9lChoBkdAll4D5Kvmo2gHTegDaAhHQKUo7W3jMmp1fZQoaAZHQJeKjscABDJoB03oA2gIR0ClKPhje9BbdX2UKGgGR0CV4vt3wCr+aAdN6ANoCEdApTDvPzFuN3V9lChoBkdAl0sElRgqmWgHTegDaAhHQKUyMZeAuqZ1fZQoaAZHQJTRiiblRxdoB03oA2gIR0ClMpmXXyy2dX2UKGgGR0CVRBwvxpcpaAdN6ANoCEdApTKkKJEYwnV9lChoBkdAlzXVLvkRz2gHTegDaAhHQKU6ontv4ud1fZQoaAZHQJRSobNr0rdoB03oA2gIR0ClO8/U4JeFdX2UKGgGR0CUeKYjSofkaAdN6ANoCEdApTw3rt3OfXV9lChoBkdAlk8luWKMvWgHTegDaAhHQKU8Qkona391fZQoaAZHQJT23FtKqXFoB03oA2gIR0ClRDLIxQBQdX2UKGgGR0CU2pVxjriVaAdN6ANoCEdApUVhIjGDMHV9lChoBkdAlMUwymALA2gHTegDaAhHQKVFySoOx0N1fZQoaAZHQJMyNg6U7jloB03oA2gIR0ClRdOq3mV8dX2UKGgGR0CTNN1ZkkKNaAdN6ANoCEdApU5KK508vHV9lChoBkdAlMuMGs3hoGgHTegDaAhHQKVPhZVXFLp1fZQoaAZHQJL6/GlyimFoB03oA2gIR0ClT/8lgMMJdX2UKGgGR0CUvaMV1wHaaAdN6ANoCEdApVAMchkiEHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-6.0.12-76060006-generic-x86_64-with-glibc2.27 # 202212290932~1671652965~22.04~452ea9d SMP PREEMPT_DYNAMIC Wed D", "Python": "3.10.8", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1283.4726731787262, "std_reward": 80.28918157429449, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T10:39:17.911136"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f415ea308f382d235f6abc63720942777c7cdd3002c8851f471c3a0d95bce385
3
+ size 2521