Commit
·
75fab71
1
Parent(s):
eda5ff8
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1531.90 +/- 141.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:20ded23a74413b7ebd933c078eae39ec160076dca270307cc6a370f2c4bf865c
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f47890f8c10>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47890f8ca0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47890f8d30>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47890f8dc0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f47890f8e50>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f47890f8ee0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f47890f8f70>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47890fc040>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f47890fc0d0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47890fc160>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47890fc1f0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47890fc280>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f47890f47b0>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1674255311759441240,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGxy2z+Yt2O/ZhQ8vvxvkj/Mye2/6tUkP8hmTb/vi6a/72HRP/TOYb0e4G4/gQJWvndWlr/Ohqe/SZ32PtX3wb+e2KC/RiatvwSt5b57I9M+BhLOvv/RPr5FVAG/sFsJwGwCMD/h+rI+ZtUgP3vseb/IwOI/VOuMvzQCHL/OmZo/vKEXwNv9oD7W40a/HqGDv2R00D/TzlK9lCs+P15rwr+OgeG+0rV5P2yR+D5NoB8/jKrJv/XKjL51kQG/wH6Dv/po0D7hGLk/xl2evz2T2j5sAjA/9xQ3wGbVID977Hm/tT01vqJsYb9ycCy+xTOLv7kUhD/w2MY+6sPXvjFE9T+RENE/9d3SvBCIi79llCk+fueav3ggSL+qZCQ/gXrlvFu7Gr9b7R5AZcgBwAmwBD8azBg+2n1hPobs5L5mSv29bAIwP/cUN8Bm1SA/e+x5vy1TPECPZ80+QUpJP4v10r/zJCQ/nHWwPbGlFz/GJC0/w5d+vOYRUr+TIOy/IjrDP36TVr8ncATAC8X1P5tfF8A3+t49JsACP4B5GkAkK3HAOAOCvvfYPD3omvq/+ubzP/srur/3FDfAEb3Lv3vseb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABRJMs1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3OA8vQAAAABrDfi/AAAAAFS2ir0AAAAAXYrqPwAAAAAwozs9AAAAAABS5j8AAAAAlJQivQAAAAAa1fO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtoEGtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMyV1z0AAAAAd372vwAAAACJavg9AAAAAKlt4T8AAAAAcwthvQAAAADoPt8/AAAAAMmzWz0AAAAAYUrivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQqIDcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC1XP29AAAAAJiQ9r8AAAAAu6TuPQAAAADNEO8/AAAAAI/hoz0AAAAAXuXePwAAAACt7bC9AAAAAAdT478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADX67Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwZbdOwAAAACHQPy/AAAAACaUpT0AAAAAGMzrPwAAAAANSQE9AAAAAPvO+j8AAAAAGNoFvgAAAABuwPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQnK1ndweiMAWyUTegDjAF0lEdAprEo0fozN3V9lChoBkdAiKdLyMDOkmgHTegDaAhHQKayQgq3Eyd1fZQoaAZHQJEPYMKCxu9oB03oA2gIR0Cmtv8WbgCPdX2UKGgGR0CSNj34Kx9oaAdN6ANoCEdApridkc0cfnV9lChoBkdAkFsi9EkSmWgHTegDaAhHQKa81ZqVQhx1fZQoaAZHQIg2iJGe+VVoB03oA2gIR0CmvfWNWEK3dX2UKGgGR0CJ8btXPqs2aAdN6ANoCEdApsK7+Haew3V9lChoBkdAi32Lronrp2gHTegDaAhHQKbEbwpe/pN1fZQoaAZHQIX8fX9R77doB03oA2gIR0CmyLSzXz19dX2UKGgGR0CC9Sf7rLQpaAdN6ANoCEdApsnd1GLDRHV9lChoBkdAg6IM7U5MlGgHTegDaAhHQKbOqWu5jH51fZQoaAZHQI0EBYeT3ZhoB03oA2gIR0Cm0FVfmcOLdX2UKGgGR0COd2/rSmZWaAdN6ANoCEdAptSwtthuwXV9lChoBkdAhSjUKiO/+WgHTegDaAhHQKbV4vboKUp1fZQoaAZHQINuw7DEWIpoB03oA2gIR0Cm2p4ywfQsdX2UKGgGR0CLjo801qFiaAdN6ANoCEdAptxVWdVebHV9lChoBkdAfjYClrM1TGgHTegDaAhHQKbguRq46Op1fZQoaAZHQIN6214Pf9BoB03oA2gIR0Cm4d1WKdhBdX2UKGgGR0CGkYxzq8lHaAdN6ANoCEdApua20/nnuHV9lChoBkdAhXSwj2SMcmgHTegDaAhHQKboaBwMpgF1fZQoaAZHQJA8pKNAC4loB03oA2gIR0Cm7L+hPCVKdX2UKGgGR0CIc+1wYLssaAdN6ANoCEdApu3jMqz7dnV9lChoBkdAjSCdweeWfWgHTegDaAhHQKby0Rr8BMl1fZQoaAZHQJMIhjvuw5hoB03oA2gIR0Cm9ILylN1ydX2UKGgGR0CKES88La24aAdN6ANoCEdApvjOr+5vtXV9lChoBkdAkVVjRtxdZGgHTegDaAhHQKb5979AHFB1fZQoaAZHQIWr4miQDFJoB03oA2gIR0Cm/t3b/Ot5dX2UKGgGR0CHOhO6/ZdwaAdN6ANoCEdApwCcyzollnV9lChoBkdAhszGcnVoYmgHTegDaAhHQKcFAUWVNYd1fZQoaAZHQIXwYOvt+kRoB03oA2gIR0CnBjP+n62wdX2UKGgGR0CQIsdDYywfaAdN6ANoCEdApwsHCqIacnV9lChoBkdAh8PWtEG7jGgHTegDaAhHQKcMt2Qnx8V1fZQoaAZHQH7QrLhaTwFoB03oA2gIR0CnESnavicYdX2UKGgGR0CFXmUHpr1vaAdN6ANoCEdApxJu/UONHnV9lChoBkdAhzTL5RCQcWgHTegDaAhHQKcXVNFBppN1fZQoaAZHQIiNg08/2TRoB03oA2gIR0CnGQRtHhCMdX2UKGgGR0CMaeEMb3oLaAdN6ANoCEdApx1O8Zk08HV9lChoBkdAhr0DEm6XjWgHTegDaAhHQKceeNtqHoJ1fZQoaAZHQJC6P/3nIQxoB03oA2gIR0CnI0i7kGRndX2UKGgGR0CEe1jI7vG7aAdN6ANoCEdApyT92mpEQXV9lChoBkdAh9e5qM3qA2gHTegDaAhHQKcpV7oB7u51fZQoaAZHQI5RsENe+mFoB03oA2gIR0CnKn5/kNnXdX2UKGgGR0CHJfEw35vcaAdN6ANoCEdApy9REv0yxnV9lChoBkdAilonogV45mgHTegDaAhHQKcw/O/L1VZ1fZQoaAZHQIxcQI0IkZ9oB03oA2gIR0CnNkza9K28dX2UKGgGR0CMScVKwpvxaAdN6ANoCEdApzgNx82Ji3V9lChoBkdAiqJ95Qgs9WgHTegDaAhHQKc+h7D2rXF1fZQoaAZHQIpc5mf5DZ1oB03oA2gIR0CnQEIFV1fWdX2UKGgGR0CIqJ2GIsRQaAdN6ANoCEdAp0SaBClabHV9lChoBkdAhe18UuctoWgHTegDaAhHQKdFvR64Uex1fZQoaAZHQJCbBP8AJcBoB03oA2gIR0CnSopC8e0YdX2UKGgGR0CA9t8c+7lJaAdN6ANoCEdAp0w9ev6j33V9lChoBkdAkAaXDiwSrmgHTegDaAhHQKdQreJpFkR1fZQoaAZHQJD2kwudwvRoB03oA2gIR0CnUdflp48mdX2UKGgGR0CSdCggow23aAdN6ANoCEdAp1agukDZDnV9lChoBkdAk9igPd2xIWgHTegDaAhHQKdYUUUwi7l1fZQoaAZHQI8t4c3l0YFoB03oA2gIR0CnXJLqt5lfdX2UKGgGR0CSPiAB1cMWaAdN6ANoCEdAp12z2tdRi3V9lChoBkdAlgXyEUTL4mgHTegDaAhHQKdiizKs+3Z1fZQoaAZHQJOWj5Ec81ZoB03oA2gIR0CnZFwnQY1pdX2UKGgGR0CT+FM72criaAdN6ANoCEdAp2is7Sy+pXV9lChoBkdAkyGylnAZbmgHTegDaAhHQKdp22jO9nN1fZQoaAZHQJNX0XHim2toB03oA2gIR0CnbrDFId2gdX2UKGgGR0CQ0nPszEaVaAdN6ANoCEdAp3BcJpnHvXV9lChoBkdAk3y5lWfbsWgHTegDaAhHQKd0mXrt3Oh1fZQoaAZHQJPT2XF98Z1oB03oA2gIR0CndbzKLbYcdX2UKGgGR0CVdDGhmGucaAdN6ANoCEdAp3qIeLehwnV9lChoBkdAlTtEmhM8HWgHTegDaAhHQKd8OYoAn2J1fZQoaAZHQJDQ9w2l2vBoB03oA2gIR0CngJmW2PT5dX2UKGgGR0CTkEN0NjLCaAdN6ANoCEdAp4HHWSU1RHV9lChoBkdAlCDp6D5CW2gHTegDaAhHQKeGnBNVR1p1fZQoaAZHQJXXghB7eEZoB03oA2gIR0CniES9VWCFdX2UKGgGR0CRkMyXD3ueaAdN6ANoCEdAp4yfX7Lt/nV9lChoBkdAlAaF6qsEJWgHTegDaAhHQKeN1+2mYSh1fZQoaAZHQJXD9R/EwWZoB03oA2gIR0CnksDuKGcndX2UKGgGR0CT1/SuhbnpaAdN6ANoCEdAp5RtkJ8fFXV9lChoBkdAl8vnyqdYn2gHTegDaAhHQKeYyrVe8f51fZQoaAZHQJjWdTBInShoB03oA2gIR0Cnmfl9roGIdX2UKGgGR0CWBog6U7jlaAdN6ANoCEdAp56/cQAdXHV9lChoBkdAlFaft6X0G2gHTegDaAhHQKegfdVvMr51fZQoaAZHQJXeTNC7btZoB03oA2gIR0CnpNOaOPvKdX2UKGgGR0CR2Em3vx6OaAdN6ANoCEdAp6X7LhaTwHV9lChoBkdAlrLK7yxzJmgHTegDaAhHQKeqtVn27Ft1fZQoaAZHQJbuS1RceKdoB03oA2gIR0CnrGReLNwBdX2UKGgGR0CWi3nQpnYhaAdN6ANoCEdAp7ClonKGL3V9lChoBkdAlwnVlkH2RWgHTegDaAhHQKexyw6hg3N1fZQoaAZHQJeeVvn8sMBoB03oA2gIR0CntqHRCx/vdX2UKGgGR0CVb4wYtQKsaAdN6ANoCEdAp7hIp8WsR3V9lChoBkdAlLtrXtjTa2gHTegDaAhHQKe8kvStvGZ1fZQoaAZHQJj1TZ13dKxoB03oA2gIR0Cnva/ywwCbdX2UKGgGR0CT51qh11W9aAdN6ANoCEdAp8J2fXf643V9lChoBkdAlQcPR7Z392gHTegDaAhHQKfEJspG4I91fZQoaAZHQJjmzM2WIGhoB03oA2gIR0CnyIZyMkyDdX2UKGgGR0CS7FvrnkksaAdN6ANoCEdAp8m2q//Nq3V9lChoBkdAlOnWwmmcfGgHTegDaAhHQKfOh2GqPwN1fZQoaAZHQJbmQ2MsH0NoB03oA2gIR0Cn0C3Ov+wUdX2UKGgGR0CYU1V5KODKaAdN6ANoCEdAp9RtH6MzdnV9lChoBkdAl8VPXCj1w2gHTegDaAhHQKfVjEm6XjV1fZQoaAZHQJcgRpL26CloB03oA2gIR0Cn2kuOjqOcdX2UKGgGR0CUgnCN0eU7aAdN6ANoCEdAp9v2c+aBqnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4db1432187c33cef31c8f2bb06a729f4b23e4360b2a99e2e109384c69ff362c2
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:220c4ec257081a5a9d8aa5a0fb2f0fbaf70bb0f1d27ddf604e8325fcd142f3a6
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47890f8c10>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47890f8ca0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47890f8d30>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47890f8dc0>", "_build": "<function ActorCriticPolicy._build at 0x7f47890f8e50>", "forward": "<function ActorCriticPolicy.forward at 0x7f47890f8ee0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f47890f8f70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47890fc040>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47890fc0d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47890fc160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47890fc1f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47890fc280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f47890f47b0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674255311759441240, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAGxy2z+Yt2O/ZhQ8vvxvkj/Mye2/6tUkP8hmTb/vi6a/72HRP/TOYb0e4G4/gQJWvndWlr/Ohqe/SZ32PtX3wb+e2KC/RiatvwSt5b57I9M+BhLOvv/RPr5FVAG/sFsJwGwCMD/h+rI+ZtUgP3vseb/IwOI/VOuMvzQCHL/OmZo/vKEXwNv9oD7W40a/HqGDv2R00D/TzlK9lCs+P15rwr+OgeG+0rV5P2yR+D5NoB8/jKrJv/XKjL51kQG/wH6Dv/po0D7hGLk/xl2evz2T2j5sAjA/9xQ3wGbVID977Hm/tT01vqJsYb9ycCy+xTOLv7kUhD/w2MY+6sPXvjFE9T+RENE/9d3SvBCIi79llCk+fueav3ggSL+qZCQ/gXrlvFu7Gr9b7R5AZcgBwAmwBD8azBg+2n1hPobs5L5mSv29bAIwP/cUN8Bm1SA/e+x5vy1TPECPZ80+QUpJP4v10r/zJCQ/nHWwPbGlFz/GJC0/w5d+vOYRUr+TIOy/IjrDP36TVr8ncATAC8X1P5tfF8A3+t49JsACP4B5GkAkK3HAOAOCvvfYPD3omvq/+ubzP/srur/3FDfAEb3Lv3vseb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABRJMs1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA3OA8vQAAAABrDfi/AAAAAFS2ir0AAAAAXYrqPwAAAAAwozs9AAAAAABS5j8AAAAAlJQivQAAAAAa1fO/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAtoEGtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMyV1z0AAAAAd372vwAAAACJavg9AAAAAKlt4T8AAAAAcwthvQAAAADoPt8/AAAAAMmzWz0AAAAAYUrivwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKQqIDcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC1XP29AAAAAJiQ9r8AAAAAu6TuPQAAAADNEO8/AAAAAI/hoz0AAAAAXuXePwAAAACt7bC9AAAAAAdT478AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADX67Q2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwZbdOwAAAACHQPy/AAAAACaUpT0AAAAAGMzrPwAAAAANSQE9AAAAAPvO+j8AAAAAGNoFvgAAAABuwPi/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJQnK1ndweiMAWyUTegDjAF0lEdAprEo0fozN3V9lChoBkdAiKdLyMDOkmgHTegDaAhHQKayQgq3Eyd1fZQoaAZHQJEPYMKCxu9oB03oA2gIR0Cmtv8WbgCPdX2UKGgGR0CSNj34Kx9oaAdN6ANoCEdApridkc0cfnV9lChoBkdAkFsi9EkSmWgHTegDaAhHQKa81ZqVQhx1fZQoaAZHQIg2iJGe+VVoB03oA2gIR0CmvfWNWEK3dX2UKGgGR0CJ8btXPqs2aAdN6ANoCEdApsK7+Haew3V9lChoBkdAi32Lronrp2gHTegDaAhHQKbEbwpe/pN1fZQoaAZHQIX8fX9R77doB03oA2gIR0CmyLSzXz19dX2UKGgGR0CC9Sf7rLQpaAdN6ANoCEdApsnd1GLDRHV9lChoBkdAg6IM7U5MlGgHTegDaAhHQKbOqWu5jH51fZQoaAZHQI0EBYeT3ZhoB03oA2gIR0Cm0FVfmcOLdX2UKGgGR0COd2/rSmZWaAdN6ANoCEdAptSwtthuwXV9lChoBkdAhSjUKiO/+WgHTegDaAhHQKbV4vboKUp1fZQoaAZHQINuw7DEWIpoB03oA2gIR0Cm2p4ywfQsdX2UKGgGR0CLjo801qFiaAdN6ANoCEdAptxVWdVebHV9lChoBkdAfjYClrM1TGgHTegDaAhHQKbguRq46Op1fZQoaAZHQIN6214Pf9BoB03oA2gIR0Cm4d1WKdhBdX2UKGgGR0CGkYxzq8lHaAdN6ANoCEdApua20/nnuHV9lChoBkdAhXSwj2SMcmgHTegDaAhHQKboaBwMpgF1fZQoaAZHQJA8pKNAC4loB03oA2gIR0Cm7L+hPCVKdX2UKGgGR0CIc+1wYLssaAdN6ANoCEdApu3jMqz7dnV9lChoBkdAjSCdweeWfWgHTegDaAhHQKby0Rr8BMl1fZQoaAZHQJMIhjvuw5hoB03oA2gIR0Cm9ILylN1ydX2UKGgGR0CKES88La24aAdN6ANoCEdApvjOr+5vtXV9lChoBkdAkVVjRtxdZGgHTegDaAhHQKb5979AHFB1fZQoaAZHQIWr4miQDFJoB03oA2gIR0Cm/t3b/Ot5dX2UKGgGR0CHOhO6/ZdwaAdN6ANoCEdApwCcyzollnV9lChoBkdAhszGcnVoYmgHTegDaAhHQKcFAUWVNYd1fZQoaAZHQIXwYOvt+kRoB03oA2gIR0CnBjP+n62wdX2UKGgGR0CQIsdDYywfaAdN6ANoCEdApwsHCqIacnV9lChoBkdAh8PWtEG7jGgHTegDaAhHQKcMt2Qnx8V1fZQoaAZHQH7QrLhaTwFoB03oA2gIR0CnESnavicYdX2UKGgGR0CFXmUHpr1vaAdN6ANoCEdApxJu/UONHnV9lChoBkdAhzTL5RCQcWgHTegDaAhHQKcXVNFBppN1fZQoaAZHQIiNg08/2TRoB03oA2gIR0CnGQRtHhCMdX2UKGgGR0CMaeEMb3oLaAdN6ANoCEdApx1O8Zk08HV9lChoBkdAhr0DEm6XjWgHTegDaAhHQKceeNtqHoJ1fZQoaAZHQJC6P/3nIQxoB03oA2gIR0CnI0i7kGRndX2UKGgGR0CEe1jI7vG7aAdN6ANoCEdApyT92mpEQXV9lChoBkdAh9e5qM3qA2gHTegDaAhHQKcpV7oB7u51fZQoaAZHQI5RsENe+mFoB03oA2gIR0CnKn5/kNnXdX2UKGgGR0CHJfEw35vcaAdN6ANoCEdApy9REv0yxnV9lChoBkdAilonogV45mgHTegDaAhHQKcw/O/L1VZ1fZQoaAZHQIxcQI0IkZ9oB03oA2gIR0CnNkza9K28dX2UKGgGR0CMScVKwpvxaAdN6ANoCEdApzgNx82Ji3V9lChoBkdAiqJ95Qgs9WgHTegDaAhHQKc+h7D2rXF1fZQoaAZHQIpc5mf5DZ1oB03oA2gIR0CnQEIFV1fWdX2UKGgGR0CIqJ2GIsRQaAdN6ANoCEdAp0SaBClabHV9lChoBkdAhe18UuctoWgHTegDaAhHQKdFvR64Uex1fZQoaAZHQJCbBP8AJcBoB03oA2gIR0CnSopC8e0YdX2UKGgGR0CA9t8c+7lJaAdN6ANoCEdAp0w9ev6j33V9lChoBkdAkAaXDiwSrmgHTegDaAhHQKdQreJpFkR1fZQoaAZHQJD2kwudwvRoB03oA2gIR0CnUdflp48mdX2UKGgGR0CSdCggow23aAdN6ANoCEdAp1agukDZDnV9lChoBkdAk9igPd2xIWgHTegDaAhHQKdYUUUwi7l1fZQoaAZHQI8t4c3l0YFoB03oA2gIR0CnXJLqt5lfdX2UKGgGR0CSPiAB1cMWaAdN6ANoCEdAp12z2tdRi3V9lChoBkdAlgXyEUTL4mgHTegDaAhHQKdiizKs+3Z1fZQoaAZHQJOWj5Ec81ZoB03oA2gIR0CnZFwnQY1pdX2UKGgGR0CT+FM72criaAdN6ANoCEdAp2is7Sy+pXV9lChoBkdAkyGylnAZbmgHTegDaAhHQKdp22jO9nN1fZQoaAZHQJNX0XHim2toB03oA2gIR0CnbrDFId2gdX2UKGgGR0CQ0nPszEaVaAdN6ANoCEdAp3BcJpnHvXV9lChoBkdAk3y5lWfbsWgHTegDaAhHQKd0mXrt3Oh1fZQoaAZHQJPT2XF98Z1oB03oA2gIR0CndbzKLbYcdX2UKGgGR0CVdDGhmGucaAdN6ANoCEdAp3qIeLehwnV9lChoBkdAlTtEmhM8HWgHTegDaAhHQKd8OYoAn2J1fZQoaAZHQJDQ9w2l2vBoB03oA2gIR0CngJmW2PT5dX2UKGgGR0CTkEN0NjLCaAdN6ANoCEdAp4HHWSU1RHV9lChoBkdAlCDp6D5CW2gHTegDaAhHQKeGnBNVR1p1fZQoaAZHQJXXghB7eEZoB03oA2gIR0CniES9VWCFdX2UKGgGR0CRkMyXD3ueaAdN6ANoCEdAp4yfX7Lt/nV9lChoBkdAlAaF6qsEJWgHTegDaAhHQKeN1+2mYSh1fZQoaAZHQJXD9R/EwWZoB03oA2gIR0CnksDuKGcndX2UKGgGR0CT1/SuhbnpaAdN6ANoCEdAp5RtkJ8fFXV9lChoBkdAl8vnyqdYn2gHTegDaAhHQKeYyrVe8f51fZQoaAZHQJjWdTBInShoB03oA2gIR0Cnmfl9roGIdX2UKGgGR0CWBog6U7jlaAdN6ANoCEdAp56/cQAdXHV9lChoBkdAlFaft6X0G2gHTegDaAhHQKegfdVvMr51fZQoaAZHQJXeTNC7btZoB03oA2gIR0CnpNOaOPvKdX2UKGgGR0CR2Em3vx6OaAdN6ANoCEdAp6X7LhaTwHV9lChoBkdAlrLK7yxzJmgHTegDaAhHQKeqtVn27Ft1fZQoaAZHQJbuS1RceKdoB03oA2gIR0CnrGReLNwBdX2UKGgGR0CWi3nQpnYhaAdN6ANoCEdAp7ClonKGL3V9lChoBkdAlwnVlkH2RWgHTegDaAhHQKexyw6hg3N1fZQoaAZHQJeeVvn8sMBoB03oA2gIR0CntqHRCx/vdX2UKGgGR0CVb4wYtQKsaAdN6ANoCEdAp7hIp8WsR3V9lChoBkdAlLtrXtjTa2gHTegDaAhHQKe8kvStvGZ1fZQoaAZHQJj1TZ13dKxoB03oA2gIR0Cnva/ywwCbdX2UKGgGR0CT51qh11W9aAdN6ANoCEdAp8J2fXf643V9lChoBkdAlQcPR7Z392gHTegDaAhHQKfEJspG4I91fZQoaAZHQJjmzM2WIGhoB03oA2gIR0CnyIZyMkyDdX2UKGgGR0CS7FvrnkksaAdN6ANoCEdAp8m2q//Nq3V9lChoBkdAlOnWwmmcfGgHTegDaAhHQKfOh2GqPwN1fZQoaAZHQJbmQ2MsH0NoB03oA2gIR0Cn0C3Ov+wUdX2UKGgGR0CYU1V5KODKaAdN6ANoCEdAp9RtH6MzdnV9lChoBkdAl8VPXCj1w2gHTegDaAhHQKfVjEm6XjV1fZQoaAZHQJcgRpL26CloB03oA2gIR0Cn2kuOjqOcdX2UKGgGR0CUgnCN0eU7aAdN6ANoCEdAp9v2c+aBqnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0d0d46ea19c69125d511716bec9d920f4c0f01fa8611dfbeeac4e574f6fff2e2
|
3 |
+
size 1171671
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1531.8957745077205, "std_reward": 141.1963989198349, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T23:50:46.748558"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36bc105174f54ad73095df4cbeb4ee5ab4f920b8a89ad2926909d351deaf6e7e
|
3 |
+
size 2136
|