asahi417 commited on
Commit
59fbbac
·
1 Parent(s): a3458f6

model update

Browse files
README.md ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - tner/btc
4
+ metrics:
5
+ - f1
6
+ - precision
7
+ - recall
8
+ model-index:
9
+ - name: tner/deberta-v3-large-btc
10
+ results:
11
+ - task:
12
+ name: Token Classification
13
+ type: token-classification
14
+ dataset:
15
+ name: tner/btc
16
+ type: tner/btc
17
+ args: tner/btc
18
+ metrics:
19
+ - name: F1
20
+ type: f1
21
+ value: 0.8399238265934805
22
+ - name: Precision
23
+ type: precision
24
+ value: 0.8237749945067018
25
+ - name: Recall
26
+ type: recall
27
+ value: 0.8567184643510055
28
+ - name: F1 (macro)
29
+ type: f1_macro
30
+ value: 0.7921150390682584
31
+ - name: Precision (macro)
32
+ type: precision_macro
33
+ value: 0.7766126681668878
34
+ - name: Recall (macro)
35
+ type: recall_macro
36
+ value: 0.8103758198218992
37
+ - name: F1 (entity span)
38
+ type: f1_entity_span
39
+ value: 0.9134087599417496
40
+ - name: Precision (entity span)
41
+ type: precision_entity_span
42
+ value: 0.8958470665787739
43
+ - name: Recall (entity span)
44
+ type: recall_entity_span
45
+ value: 0.931672760511883
46
+
47
+ pipeline_tag: token-classification
48
+ widget:
49
+ - text: "Jacob Collier is a Grammy awarded artist from England."
50
+ example_title: "NER Example 1"
51
+ ---
52
+ # tner/deberta-v3-large-btc
53
+
54
+ This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the
55
+ [tner/btc](https://huggingface.co/datasets/tner/btc) dataset.
56
+ Model fine-tuning is done via [T-NER](https://github.com/asahi417/tner)'s hyper-parameter search (see the repository
57
+ for more detail). It achieves the following results on the test set:
58
+ - F1 (micro): 0.8399238265934805
59
+ - Precision (micro): 0.8237749945067018
60
+ - Recall (micro): 0.8567184643510055
61
+ - F1 (macro): 0.7921150390682584
62
+ - Precision (macro): 0.7766126681668878
63
+ - Recall (macro): 0.8103758198218992
64
+
65
+ The per-entity breakdown of the F1 score on the test set are below:
66
+ - location: 0.7503949447077408
67
+ - organization: 0.7042372881355932
68
+ - person: 0.9217128843614413
69
+
70
+ For F1 scores, the confidence interval is obtained by bootstrap as below:
71
+ - F1 (micro):
72
+ - 90%: [0.8283024935970381, 0.8507400882379221]
73
+ - 95%: [0.8260021524132041, 0.8526162579659953]
74
+ - F1 (macro):
75
+ - 90%: [0.8283024935970381, 0.8507400882379221]
76
+ - 95%: [0.8260021524132041, 0.8526162579659953]
77
+
78
+ Full evaluation can be found at [metric file of NER](https://huggingface.co/tner/deberta-v3-large-btc/raw/main/eval/metric.json)
79
+ and [metric file of entity span](https://huggingface.co/tner/deberta-v3-large-btc/raw/main/eval/metric_span.json).
80
+
81
+ ### Usage
82
+ This model can be used through the [tner library](https://github.com/asahi417/tner). Install the library via pip
83
+ ```shell
84
+ pip install tner
85
+ ```
86
+ and activate model as below.
87
+ ```python
88
+ from tner import TransformersNER
89
+ model = TransformersNER("tner/deberta-v3-large-btc")
90
+ model.predict(["Jacob Collier is a Grammy awarded English artist from London"])
91
+ ```
92
+ It can be used via transformers library but it is not recommended as CRF layer is not supported at the moment.
93
+
94
+ ### Training hyperparameters
95
+
96
+ The following hyperparameters were used during training:
97
+ - dataset: ['tner/btc']
98
+ - dataset_split: train
99
+ - dataset_name: None
100
+ - local_dataset: None
101
+ - model: microsoft/deberta-v3-large
102
+ - crf: True
103
+ - max_length: 128
104
+ - epoch: 15
105
+ - batch_size: 16
106
+ - lr: 1e-05
107
+ - random_seed: 42
108
+ - gradient_accumulation_steps: 8
109
+ - weight_decay: None
110
+ - lr_warmup_step_ratio: 0.1
111
+ - max_grad_norm: None
112
+
113
+ The full configuration can be found at [fine-tuning parameter file](https://huggingface.co/tner/deberta-v3-large-btc/raw/main/trainer_config.json).
114
+
115
+ ### Reference
116
+ If you use any resource from T-NER, please consider to cite our [paper](https://aclanthology.org/2021.eacl-demos.7/).
117
+
118
+ ```
119
+
120
+ @inproceedings{ushio-camacho-collados-2021-ner,
121
+ title = "{T}-{NER}: An All-Round Python Library for Transformer-based Named Entity Recognition",
122
+ author = "Ushio, Asahi and
123
+ Camacho-Collados, Jose",
124
+ booktitle = "Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations",
125
+ month = apr,
126
+ year = "2021",
127
+ address = "Online",
128
+ publisher = "Association for Computational Linguistics",
129
+ url = "https://aclanthology.org/2021.eacl-demos.7",
130
+ doi = "10.18653/v1/2021.eacl-demos.7",
131
+ pages = "53--62",
132
+ abstract = "Language model (LM) pretraining has led to consistent improvements in many NLP downstream tasks, including named entity recognition (NER). In this paper, we present T-NER (Transformer-based Named Entity Recognition), a Python library for NER LM finetuning. In addition to its practical utility, T-NER facilitates the study and investigation of the cross-domain and cross-lingual generalization ability of LMs finetuned on NER. Our library also provides a web app where users can get model predictions interactively for arbitrary text, which facilitates qualitative model evaluation for non-expert programmers. We show the potential of the library by compiling nine public NER datasets into a unified format and evaluating the cross-domain and cross- lingual performance across the datasets. The results from our initial experiments show that in-domain performance is generally competitive across datasets. However, cross-domain generalization is challenging even with a large pretrained LM, which has nevertheless capacity to learn domain-specific features if fine- tuned on a combined dataset. To facilitate future research, we also release all our LM checkpoints via the Hugging Face model hub.",
133
+ }
134
+
135
+ ```
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "tner_ckpt/btc_deberta_v3_large/best_model",
3
  "architectures": [
4
  "DebertaV2ForTokenClassification"
5
  ],
 
1
  {
2
+ "_name_or_path": "tner_ckpt/btc_deberta_v3_large/model_lzavco/epoch_5",
3
  "architectures": [
4
  "DebertaV2ForTokenClassification"
5
  ],
eval/metric.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.8399238265934805, "micro/f1_ci": {"90": [0.8283024935970381, 0.8507400882379221], "95": [0.8260021524132041, 0.8526162579659953]}, "micro/recall": 0.8567184643510055, "micro/precision": 0.8237749945067018, "macro/f1": 0.7921150390682584, "macro/f1_ci": {"90": [0.7778836465333343, 0.8064908270960832], "95": [0.7744530632383323, 0.8088306344266144]}, "macro/recall": 0.8103758198218992, "macro/precision": 0.7766126681668878, "per_entity_metric": {"location": {"f1": 0.7503949447077408, "f1_ci": {"90": [0.722621343484653, 0.7783360088749672], "95": [0.7181196923659109, 0.7831327609287725]}, "precision": 0.753968253968254, "recall": 0.7468553459119497}, "organization": {"f1": 0.7042372881355932, "f1_ci": {"90": [0.680714976595495, 0.727503450051444], "95": [0.6767128243490045, 0.7317512781467873]}, "precision": 0.6543307086614173, "recall": 0.7623853211009174}, "person": {"f1": 0.9217128843614413, "f1_ci": {"90": [0.9119808330613168, 0.9304886792800428], "95": [0.9104814441886399, 0.9319999849049878]}, "precision": 0.9215390418709921, "recall": 0.9218867924528302}}}
eval/metric_span.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"micro/f1": 0.9134087599417496, "micro/f1_ci": {"90": [0.9063238930638302, 0.9201311718583651], "95": [0.9051626400610194, 0.9211604895898028]}, "micro/recall": 0.931672760511883, "micro/precision": 0.8958470665787739, "macro/f1": 0.9134087599417496, "macro/f1_ci": {"90": [0.9063238930638302, 0.9201311718583651], "95": [0.9051626400610194, 0.9211604895898028]}, "macro/recall": 0.931672760511883, "macro/precision": 0.8958470665787739}
eval/prediction.validation.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json CHANGED
@@ -4,7 +4,7 @@
4
  "do_lower_case": false,
5
  "eos_token": "[SEP]",
6
  "mask_token": "[MASK]",
7
- "name_or_path": "tner_ckpt/btc_deberta_v3_large/best_model",
8
  "pad_token": "[PAD]",
9
  "sep_token": "[SEP]",
10
  "sp_model_kwargs": {},
 
4
  "do_lower_case": false,
5
  "eos_token": "[SEP]",
6
  "mask_token": "[MASK]",
7
+ "name_or_path": "tner_ckpt/btc_deberta_v3_large/model_lzavco/epoch_5",
8
  "pad_token": "[PAD]",
9
  "sep_token": "[SEP]",
10
  "sp_model_kwargs": {},
trainer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"dataset": ["tner/btc"], "dataset_split": "train", "dataset_name": null, "local_dataset": null, "model": "microsoft/deberta-v3-large", "crf": true, "max_length": 128, "epoch": 15, "batch_size": 16, "lr": 1e-05, "random_seed": 42, "gradient_accumulation_steps": 8, "weight_decay": null, "lr_warmup_step_ratio": 0.1, "max_grad_norm": null}