from datasets import load_dataset from huggingface_hub import hf_hub_download from sklearn.metrics import accuracy_score import importlib.util repo_id = "tlmk22/QuefrencyGuardian" model_file = "model.py" model_path = hf_hub_download(repo_id=repo_id, filename=model_file) spec = importlib.util.spec_from_file_location("model", model_path) model_module = importlib.util.module_from_spec(spec) spec.loader.exec_module(model_module) FastModelHuggingFace = model_module.FastModelHuggingFace fast_model = FastModelHuggingFace.from_pretrained(repo_id) # Perform predictions for a single WAV file map_labels = {0: "chainsaw", 1: "environment"} wav_prediction = fast_model.predict("chainsaw.wav", device="cpu") print(f"Prediction : {map_labels[wav_prediction[0]]}") # Example: predicting on a Hugging Face dataset dataset = load_dataset("rfcx/frugalai") test_dataset = dataset["test"] true_label = dataset["test"]["label"] predictions = fast_model.predict(dataset["test"]) print(accuracy_score(true_label, predictions))