tlemagueresse commited on
Commit
7b23ae2
·
1 Parent(s): 1583464

Update files for external import

Browse files
examples/chainsaw.wav ADDED
Binary file (72 kB). View file
 
examples/environment.wav ADDED
Binary file (72 kB). View file
 
example_usage_fastmodel.py → examples/example_usage_fastmodel.py RENAMED
@@ -5,13 +5,13 @@ from codecarbon import EmissionsTracker
5
  from datasets import load_dataset
6
  from sklearn.metrics import accuracy_score
7
 
8
- from fast_model import FastModel, save_pipeline
9
 
10
  dataset = load_dataset("rfcx/frugalai")
11
  train_dataset = dataset["train"]
12
  test_dataset = dataset["test"]
13
  tracker = EmissionsTracker(allow_multiple_runs=True)
14
- with open("config.json", "r") as file:
15
  config = json.load(file)
16
  model = FastModel(
17
  config["audio_processing_params"],
@@ -32,4 +32,4 @@ print(accuracy_score(true_label, predictions))
32
  print("energy_consumed_wh", emissions_data.energy_consumed * 1000)
33
  print("emissions_gco2eq", emissions_data.emissions * 1000)
34
 
35
- save_pipeline(model, Path("./"))
 
5
  from datasets import load_dataset
6
  from sklearn.metrics import accuracy_score
7
 
8
+ from model import FastModel, save_pipeline
9
 
10
  dataset = load_dataset("rfcx/frugalai")
11
  train_dataset = dataset["train"]
12
  test_dataset = dataset["test"]
13
  tracker = EmissionsTracker(allow_multiple_runs=True)
14
+ with open("../config.json", "r") as file:
15
  config = json.load(file)
16
  model = FastModel(
17
  config["audio_processing_params"],
 
32
  print("energy_consumed_wh", emissions_data.energy_consumed * 1000)
33
  print("emissions_gco2eq", emissions_data.emissions * 1000)
34
 
35
+ save_pipeline(model, Path("../"))
example_usage_fastmodel_hf.py → examples/example_usage_fastmodel_hf.py RENAMED
@@ -1,12 +1,16 @@
1
  from datasets import load_dataset
 
2
  from sklearn.metrics import accuracy_score
3
- from transformers import AutoModel
4
 
5
- from fast_model import FastModelHuggingFace
6
-
7
- model_name = "tlmk22/QuefrencyGuardian"
8
- fast_model = AutoModel.from_pretrained(model_name)
9
- # fast_model = FastModelHuggingFace.from_pretrained(repo_id)
 
 
 
10
 
11
  # Perform predictions for a single WAV file
12
  map_labels = {0: "chainsaw", 1: "environment"}
 
1
  from datasets import load_dataset
2
+ from huggingface_hub import hf_hub_download
3
  from sklearn.metrics import accuracy_score
4
+ import importlib.util
5
 
6
+ repo_id = "tlmk22/QuefrencyGuardian"
7
+ model_file = "model.py"
8
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_file)
9
+ spec = importlib.util.spec_from_file_location("model", model_file)
10
+ fastmodel_module = importlib.util.module_from_spec(spec)
11
+ spec.loader.exec_module(fastmodel_module)
12
+ FastModelHuggingFace = fastmodel_module.FastModelHuggingFace
13
+ fast_model = FastModelHuggingFace.from_pretrained(repo_id)
14
 
15
  # Perform predictions for a single WAV file
16
  map_labels = {0: "chainsaw", 1: "environment"}
fast_model.py → model.py RENAMED
File without changes