tlemagueresse
commited on
Commit
·
02c69cc
1
Parent(s):
06e8ee0
[WIP] Refactoring for easy model import from HF
Browse files- config.json +33 -0
- example_usage_fastmodel.py +35 -0
- example_usage_fastmodel_hf.py +27 -0
- fast_model.py +288 -145
- model/features.json +0 -13
- model/lgbm_params.json +0 -12
- model/model.txt → model_fast_model.txt +0 -0
- pipeline.pkl +3 -0
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"model_class": "FastModelHuggingFace",
|
3 |
+
"framework": "PyTorch + LightGBM",
|
4 |
+
"audio_processing_params": {
|
5 |
+
"sample_rate": 12000,
|
6 |
+
"duration": 3,
|
7 |
+
"padding_method": "reflect"
|
8 |
+
},
|
9 |
+
"features_params": {
|
10 |
+
"n_fft": 512,
|
11 |
+
"hop_length": 256,
|
12 |
+
"pad": 0,
|
13 |
+
"power": 2,
|
14 |
+
"pad_mode": "reflect",
|
15 |
+
"f_min": 70,
|
16 |
+
"f_max": 1525,
|
17 |
+
"fc_min": 0.05,
|
18 |
+
"fc_max": 0.8
|
19 |
+
},
|
20 |
+
"lgbm_params": {
|
21 |
+
"objective": "binary",
|
22 |
+
"metric": "binary_logloss",
|
23 |
+
"boosting_type": "gbdt",
|
24 |
+
"learning_rate": 0.1,
|
25 |
+
"num_leaves": 75,
|
26 |
+
"max_depth": -1,
|
27 |
+
"feature_fraction": 0.8,
|
28 |
+
"bagging_fraction": 0.8,
|
29 |
+
"bagging_freq": 5,
|
30 |
+
"verbosity": -1
|
31 |
+
}
|
32 |
+
|
33 |
+
}
|
example_usage_fastmodel.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
from pathlib import Path
|
3 |
+
|
4 |
+
from codecarbon import EmissionsTracker
|
5 |
+
from datasets import load_dataset
|
6 |
+
from sklearn.metrics import accuracy_score
|
7 |
+
|
8 |
+
from fast_model import FastModel, save_pipeline
|
9 |
+
|
10 |
+
dataset = load_dataset("rfcx/frugalai")
|
11 |
+
train_dataset = dataset["train"]
|
12 |
+
test_dataset = dataset["test"]
|
13 |
+
tracker = EmissionsTracker(allow_multiple_runs=True)
|
14 |
+
with open("config.json", "r") as file:
|
15 |
+
config = json.load(file)
|
16 |
+
model = FastModel(
|
17 |
+
config["audio_processing_params"],
|
18 |
+
config["features_params"],
|
19 |
+
config["lgbm_params"],
|
20 |
+
)
|
21 |
+
model.fit(dataset["train"])
|
22 |
+
|
23 |
+
# INFERENCE
|
24 |
+
tracker.start()
|
25 |
+
tracker.start_task("inference")
|
26 |
+
true_label = dataset["test"]["label"]
|
27 |
+
predictions = model.predict(dataset["test"])
|
28 |
+
|
29 |
+
emissions_data = tracker.stop_task()
|
30 |
+
|
31 |
+
print(accuracy_score(true_label, predictions))
|
32 |
+
print("energy_consumed_wh", emissions_data.energy_consumed * 1000)
|
33 |
+
print("emissions_gco2eq", emissions_data.emissions * 1000)
|
34 |
+
|
35 |
+
save_pipeline(model, Path("./"))
|
example_usage_fastmodel_hf.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torchaudio
|
2 |
+
from datasets import load_dataset
|
3 |
+
from sklearn.metrics import accuracy_score
|
4 |
+
from fast_model import FastModelHuggingFace
|
5 |
+
|
6 |
+
repo_id = "tlmk22/QuefrencyGuardian"
|
7 |
+
fast_model = FastModelHuggingFace.from_pretrained(repo_id)
|
8 |
+
|
9 |
+
# Example: predicting on a single WAV file
|
10 |
+
wav_path = "wave_example/chainsaw.wav"
|
11 |
+
waveform, sampling_rate = torchaudio.load(wav_path) # Charger le fichier audio
|
12 |
+
if sampling_rate != 12000:
|
13 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sampling_rate, new_freq=12000)
|
14 |
+
waveform = resampler(waveform)
|
15 |
+
|
16 |
+
# Perform predictions for a single WAV file
|
17 |
+
map_labels = {0: "chainsaw", 1: "environment"}
|
18 |
+
wav_prediction = fast_model.predict(waveform)
|
19 |
+
print(f"Prediction : {map_labels[wav_prediction]}")
|
20 |
+
|
21 |
+
# Example: predicting on a Hugging Face dataset
|
22 |
+
dataset = load_dataset("rfcx/frugalai")
|
23 |
+
test_dataset = dataset["test"]
|
24 |
+
true_label = dataset["test"]["label"]
|
25 |
+
|
26 |
+
predictions = fast_model.predict(dataset["test"])
|
27 |
+
print(accuracy_score(true_label, predictions))
|
fast_model.py
CHANGED
@@ -1,15 +1,20 @@
|
|
1 |
import os
|
2 |
import struct
|
3 |
import pickle
|
|
|
|
|
4 |
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
import lightgbm as lgb
|
8 |
import torchaudio
|
|
|
9 |
from sklearn.exceptions import NotFittedError
|
|
|
10 |
from torchaudio.transforms import Spectrogram
|
11 |
import torch.nn.functional as F
|
12 |
from datasets.formatting import query_table
|
|
|
13 |
import warnings
|
14 |
|
15 |
warnings.filterwarnings("ignore")
|
@@ -21,7 +26,7 @@ class FastModel:
|
|
21 |
"""
|
22 |
A class designed for training and predicting using LightGBM, incorporating spectral and cepstral features.
|
23 |
|
24 |
-
|
25 |
1. Batch Loading and Decoding:
|
26 |
Load audio data in batches directly from a table and decode byte-encoded information.
|
27 |
|
@@ -36,85 +41,39 @@ class FastModel:
|
|
36 |
3. Model Application:
|
37 |
Use the extracted features as input for the LightGBM model to perform predictions.
|
38 |
|
39 |
-
### Options for Energy Optimization:
|
40 |
-
- Feature Selection:
|
41 |
-
Mask less significant features to reduce computation.
|
42 |
-
- Signal Truncation:
|
43 |
-
Process only a limited duration (e.g., a few seconds) of the audio signal.
|
44 |
-
- Hardware Acceleration:
|
45 |
-
Utilize CUDA to speed up feature computation when supported.
|
46 |
-
|
47 |
Attributes
|
48 |
----------
|
|
|
|
|
49 |
feature_params : dict
|
50 |
-
Parameters for configuring the
|
51 |
lgbm_params : dict, optional
|
52 |
Parameters for configuring the LightGBM model.
|
53 |
-
model_file : str
|
54 |
-
Path for saving or loading the trained LightGBM model.
|
55 |
-
padding_method : str
|
56 |
-
Padding method to apply when the waveform size is smaller than the desired size.
|
57 |
-
waveform_duration : float
|
58 |
-
Duration of the audio waveform to process, in seconds.
|
59 |
-
mask_features : bool
|
60 |
-
Whether to enable feature masking for dimensionality reduction.
|
61 |
-
mask_file : str
|
62 |
-
Path to save or load the feature mask file.
|
63 |
-
mask_ratio : float
|
64 |
-
The ratio of features to retain when feature masking is applied.
|
65 |
-
batch_size : int
|
66 |
-
Number of samples per batch during training and prediction.
|
67 |
-
apply_offset_on_fit : bool
|
68 |
-
Whether to apply the offset on fit. Useful if waveform_duration is below than 3 seconds.
|
69 |
device : str
|
70 |
Device used for computation ("cpu" or "cuda").
|
71 |
-
|
72 |
-
Methods
|
73 |
-
-------
|
74 |
-
_save_feature_mask(model, n_features, ratio):
|
75 |
-
Saves the most important features as a mask.
|
76 |
-
_load_feature_mask():
|
77 |
-
Loads the feature mask from the saved file.
|
78 |
-
fit(dataset):
|
79 |
-
Trains the LightGBM model on audio features extracted from the dataset.
|
80 |
-
predict(dataset, get_proba=False):
|
81 |
-
Predicts labels or probabilities for a dataset using the trained model.
|
82 |
-
get_features(audios, spectrogram_transformer, cepstral_transformer):
|
83 |
-
Extracts features from raw audio using spectrogram and cepstral transformations.
|
84 |
"""
|
85 |
|
86 |
def __init__(
|
87 |
self,
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
model_file=None,
|
93 |
-
mask_features=False,
|
94 |
-
mask_file="feature_mask.pkl",
|
95 |
-
mask_ratio=0.25,
|
96 |
-
batch_size=5000,
|
97 |
-
apply_offset_on_fit=False,
|
98 |
-
device="cpu",
|
99 |
):
|
|
|
100 |
self.feature_params = feature_params
|
101 |
self.lgbm_params = lgbm_params
|
102 |
-
self.model_file = model_file
|
103 |
-
self.padding_method = padding_method
|
104 |
-
self.waveform_duration = waveform_duration
|
105 |
-
self.mask_features = mask_features
|
106 |
-
self.mask_file = mask_file
|
107 |
-
self.mask_ratio = mask_ratio
|
108 |
-
self.batch_size = batch_size
|
109 |
-
self.apply_offset_on_fit = apply_offset_on_fit
|
110 |
self.device = torch.device(
|
111 |
"cuda" if device == "cuda" and torch.cuda.is_available() else "cpu"
|
112 |
)
|
|
|
|
|
|
|
113 |
self.spectrogram_transformer = Spectrogram(
|
114 |
n_fft=self.feature_params["n_fft"],
|
115 |
hop_length=self.feature_params["hop_length"],
|
116 |
pad=self.feature_params["pad"],
|
117 |
-
window_fn=
|
118 |
power=self.feature_params["power"],
|
119 |
pad_mode=self.feature_params["pad_mode"],
|
120 |
onesided=True,
|
@@ -130,7 +89,7 @@ class FastModel:
|
|
130 |
n_fft=self.n_fft_cepstral,
|
131 |
hop_length=self.n_fft_cepstral,
|
132 |
pad=0,
|
133 |
-
window_fn=
|
134 |
power=self.feature_params["power"],
|
135 |
pad_mode=self.feature_params["pad_mode"],
|
136 |
onesided=True,
|
@@ -142,27 +101,15 @@ class FastModel:
|
|
142 |
device=self.device,
|
143 |
)
|
144 |
|
145 |
-
def
|
146 |
-
|
147 |
-
sorted_indices = np.argsort(feature_importance)[::-1]
|
148 |
-
top_indices = sorted_indices[: max(1, int(n_features * ratio))]
|
149 |
-
mask = np.zeros(n_features, dtype=bool)
|
150 |
-
mask[top_indices] = True
|
151 |
-
with open(self.mask_file, "wb") as f:
|
152 |
-
pickle.dump(mask, f)
|
153 |
-
|
154 |
-
def _load_feature_mask(self):
|
155 |
-
with open(self.mask_file, "rb") as f:
|
156 |
-
return pickle.load(f)
|
157 |
-
|
158 |
-
def fit(self, dataset):
|
159 |
-
"""
|
160 |
-
Trains a LightGBM model on features extracted from the dataset.
|
161 |
|
162 |
Parameters
|
163 |
----------
|
164 |
dataset : Dataset
|
165 |
-
Dataset object containing audio samples and their corresponding labels.
|
|
|
|
|
166 |
|
167 |
Raises
|
168 |
------
|
@@ -170,36 +117,22 @@ class FastModel:
|
|
170 |
If the dataset is empty or invalid.
|
171 |
"""
|
172 |
features, labels = [], []
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
)
|
182 |
-
|
183 |
-
audio, self.spectrogram_transformer, self.cepstral_transformer
|
184 |
-
)
|
185 |
-
features.append(feature)
|
186 |
-
labels.extend(label)
|
187 |
x_train = torch.cat(features, dim=0)
|
188 |
train_data = lgb.Dataset(x_train.cpu(), label=labels)
|
189 |
-
model = lgb.train(self.lgbm_params, train_data)
|
190 |
-
|
191 |
-
if self.mask_features:
|
192 |
-
self._save_feature_mask(model, x_train.shape[1], self.mask_ratio)
|
193 |
-
mask = self._load_feature_mask()
|
194 |
-
x_train = x_train[:, mask]
|
195 |
-
train_data = lgb.Dataset(x_train.cpu(), label=labels)
|
196 |
-
model = lgb.train(self.lgbm_params, train_data)
|
197 |
-
|
198 |
-
model.save_model(self.model_file)
|
199 |
|
200 |
-
def predict(self, dataset, get_proba=False):
|
201 |
-
"""
|
202 |
-
Predicts labels or probabilities for a dataset using the trained model.
|
203 |
|
204 |
Parameters
|
205 |
----------
|
@@ -207,6 +140,8 @@ class FastModel:
|
|
207 |
The dataset containing audio data for prediction.
|
208 |
get_proba : bool, optional
|
209 |
If True, returns class probabilities rather than binary predictions (default is False).
|
|
|
|
|
210 |
|
211 |
Returns
|
212 |
-------
|
@@ -218,49 +153,34 @@ class FastModel:
|
|
218 |
------
|
219 |
NotFittedError
|
220 |
If the model is not yet trained.
|
221 |
-
FileNotFoundError
|
222 |
-
If the model file does not exist.
|
223 |
"""
|
224 |
-
if not self.
|
225 |
-
raise NotFittedError("
|
226 |
-
if not os.path.isfile(self.model_file):
|
227 |
-
raise FileNotFoundError(f"Model file {self.model_file} not found.")
|
228 |
-
|
229 |
features = []
|
230 |
for audio, _ in batch_audio_loader(
|
231 |
dataset,
|
232 |
-
waveform_duration=self.
|
233 |
-
batch_size=
|
234 |
-
padding_method=self.padding_method,
|
|
|
235 |
):
|
236 |
-
feature = self.get_features(
|
237 |
-
audio, self.spectrogram_transformer, self.cepstral_transformer
|
238 |
-
)
|
239 |
features.append(feature)
|
240 |
features = torch.cat(features, dim=0)
|
241 |
torch.cuda.empty_cache()
|
242 |
|
243 |
-
|
244 |
-
mask = self._load_feature_mask()
|
245 |
-
features = features[:, mask]
|
246 |
-
|
247 |
-
model = lgb.Booster(model_file=self.model_file)
|
248 |
-
y_score = model.predict(features.cpu())
|
249 |
|
250 |
return y_score if get_proba else (y_score >= 0.5).astype(int)
|
251 |
|
252 |
-
def get_features(self, audios
|
253 |
"""
|
254 |
Extracts features from raw audio using spectrogram and cepstrum transformations.
|
255 |
|
256 |
Parameters
|
257 |
----------
|
258 |
audios : torch.Tensor
|
259 |
-
A batch of audio waveforms as
|
260 |
-
spectrogram_transformer : Spectrogram
|
261 |
-
Transformation used to compute MelSpectrogram features.
|
262 |
-
cepstral_transformer : Spectrogram
|
263 |
-
Transformation used to compute cepstral features.
|
264 |
|
265 |
Returns
|
266 |
-------
|
@@ -273,9 +193,9 @@ class FastModel:
|
|
273 |
If the input audio tensor is empty or invalid.
|
274 |
"""
|
275 |
audios = audios.to(self.device)
|
276 |
-
sxx = spectrogram_transformer(audios) # shape : (n_audios, n_f, n_blocks)
|
277 |
sxx = torch.log10(torch.clamp(sxx.permute(0, 2, 1), min=1e-10))
|
278 |
-
cepstral_mat = cepstral_transformer(sxx[:, :, self.ind_f_filtered]).squeeze(dim=3)[
|
279 |
:, :, self.ind_cf_filtered
|
280 |
]
|
281 |
|
@@ -289,22 +209,21 @@ class FastModel:
|
|
289 |
|
290 |
|
291 |
def batch_audio_loader(
|
292 |
-
dataset,
|
293 |
-
waveform_duration=3,
|
294 |
-
batch_size=1,
|
295 |
-
sr=12000,
|
296 |
-
device="cpu",
|
297 |
-
padding_method=None,
|
298 |
-
offset=0,
|
299 |
):
|
300 |
-
"""
|
301 |
-
Loads and preprocesses audio data from a dataset for training or inference in batches.
|
302 |
|
303 |
Parameters
|
304 |
----------
|
305 |
dataset : Dataset
|
306 |
The dataset containing audio samples and labels.
|
307 |
-
waveform_duration :
|
308 |
Desired duration of the audio waveforms in seconds (default is 3).
|
309 |
batch_size : int, optional
|
310 |
Number of audio samples per batch (default is 1).
|
@@ -319,10 +238,10 @@ def batch_audio_loader(
|
|
319 |
|
320 |
Yields
|
321 |
------
|
322 |
-
tuple
|
323 |
A tuple (batch_audios, batch_labels), where:
|
324 |
-
- batch_audios is a tensor of processed audio waveforms.
|
325 |
-
- batch_labels is a tensor of corresponding audio labels.
|
326 |
|
327 |
Raises
|
328 |
------
|
@@ -399,7 +318,11 @@ def batch_audio_loader(
|
|
399 |
yield batch_audios_on_device, batch_labels_on_device
|
400 |
|
401 |
|
402 |
-
def apply_padding(
|
|
|
|
|
|
|
|
|
403 |
"""
|
404 |
Applies padding to the waveform when its size is smaller than the desired output size.
|
405 |
|
@@ -432,3 +355,223 @@ def apply_padding(waveform, output_size, padding_method="zero"):
|
|
432 |
|
433 |
return F.pad(waveform.unsqueeze(0), (0, total_pad), mode=padding_method).squeeze()
|
434 |
raise ValueError(f"Invalid padding method: {padding_method}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
import struct
|
3 |
import pickle
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Literal, Union
|
6 |
|
7 |
import numpy as np
|
8 |
import torch
|
9 |
import lightgbm as lgb
|
10 |
import torchaudio
|
11 |
+
from huggingface_hub import hf_hub_download
|
12 |
from sklearn.exceptions import NotFittedError
|
13 |
+
from torch import Tensor
|
14 |
from torchaudio.transforms import Spectrogram
|
15 |
import torch.nn.functional as F
|
16 |
from datasets.formatting import query_table
|
17 |
+
from datasets import Dataset
|
18 |
import warnings
|
19 |
|
20 |
warnings.filterwarnings("ignore")
|
|
|
26 |
"""
|
27 |
A class designed for training and predicting using LightGBM, incorporating spectral and cepstral features.
|
28 |
|
29 |
+
Workflow:
|
30 |
1. Batch Loading and Decoding:
|
31 |
Load audio data in batches directly from a table and decode byte-encoded information.
|
32 |
|
|
|
41 |
3. Model Application:
|
42 |
Use the extracted features as input for the LightGBM model to perform predictions.
|
43 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
44 |
Attributes
|
45 |
----------
|
46 |
+
audio_processing_params : dict
|
47 |
+
Parameters for configuring audio processing.
|
48 |
feature_params : dict
|
49 |
+
Parameters for configuring the Spectrogram and Cepstrogram transformation.
|
50 |
lgbm_params : dict, optional
|
51 |
Parameters for configuring the LightGBM model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
device : str
|
53 |
Device used for computation ("cpu" or "cuda").
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
"""
|
55 |
|
56 |
def __init__(
|
57 |
self,
|
58 |
+
audio_processing_params: dict,
|
59 |
+
feature_params: dict,
|
60 |
+
lgbm_params: dict,
|
61 |
+
device: str = "cuda",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
):
|
63 |
+
self.audio_processing_params = audio_processing_params
|
64 |
self.feature_params = feature_params
|
65 |
self.lgbm_params = lgbm_params
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
self.device = torch.device(
|
67 |
"cuda" if device == "cuda" and torch.cuda.is_available() else "cpu"
|
68 |
)
|
69 |
+
self.model = None
|
70 |
+
|
71 |
+
# Initialize Spectrogram & Cepstrogram
|
72 |
self.spectrogram_transformer = Spectrogram(
|
73 |
n_fft=self.feature_params["n_fft"],
|
74 |
hop_length=self.feature_params["hop_length"],
|
75 |
pad=self.feature_params["pad"],
|
76 |
+
window_fn=torch.hamming_window,
|
77 |
power=self.feature_params["power"],
|
78 |
pad_mode=self.feature_params["pad_mode"],
|
79 |
onesided=True,
|
|
|
89 |
n_fft=self.n_fft_cepstral,
|
90 |
hop_length=self.n_fft_cepstral,
|
91 |
pad=0,
|
92 |
+
window_fn=torch.hamming_window,
|
93 |
power=self.feature_params["power"],
|
94 |
pad_mode=self.feature_params["pad_mode"],
|
95 |
onesided=True,
|
|
|
101 |
device=self.device,
|
102 |
)
|
103 |
|
104 |
+
def fit(self, dataset: Dataset, batch_size: int = 5000):
|
105 |
+
"""Trains a LightGBM model on features extracted from the dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
Parameters
|
108 |
----------
|
109 |
dataset : Dataset
|
110 |
+
Arrow Dataset object containing audio samples and their corresponding labels.
|
111 |
+
batch_size : int, optional
|
112 |
+
Number of audio samples per batch (default is 5000).
|
113 |
|
114 |
Raises
|
115 |
------
|
|
|
117 |
If the dataset is empty or invalid.
|
118 |
"""
|
119 |
features, labels = [], []
|
120 |
+
for audio, label in batch_audio_loader(
|
121 |
+
dataset,
|
122 |
+
waveform_duration=self.audio_processing_params["duration"],
|
123 |
+
batch_size=batch_size,
|
124 |
+
padding_method=self.audio_processing_params["padding_method"],
|
125 |
+
device=self.device,
|
126 |
+
):
|
127 |
+
feature = self.get_features(audio)
|
128 |
+
features.append(feature)
|
129 |
+
labels.extend(label)
|
|
|
|
|
|
|
|
|
130 |
x_train = torch.cat(features, dim=0)
|
131 |
train_data = lgb.Dataset(x_train.cpu(), label=labels)
|
132 |
+
self.model = lgb.train(self.lgbm_params, train_data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
def predict(self, dataset: Dataset, get_proba: bool = False, batch_size: int = 5000):
|
135 |
+
"""Predicts labels or probabilities for a dataset using the trained model.
|
|
|
136 |
|
137 |
Parameters
|
138 |
----------
|
|
|
140 |
The dataset containing audio data for prediction.
|
141 |
get_proba : bool, optional
|
142 |
If True, returns class probabilities rather than binary predictions (default is False).
|
143 |
+
batch_size : int, optional
|
144 |
+
Number of audio samples per batch (default is 5000).
|
145 |
|
146 |
Returns
|
147 |
-------
|
|
|
153 |
------
|
154 |
NotFittedError
|
155 |
If the model is not yet trained.
|
|
|
|
|
156 |
"""
|
157 |
+
if not self.model:
|
158 |
+
raise NotFittedError("LGBM model is not fitted yet.")
|
|
|
|
|
|
|
159 |
features = []
|
160 |
for audio, _ in batch_audio_loader(
|
161 |
dataset,
|
162 |
+
waveform_duration=self.audio_processing_params["duration"],
|
163 |
+
batch_size=batch_size,
|
164 |
+
padding_method=self.audio_processing_params["padding_method"],
|
165 |
+
device=self.device,
|
166 |
):
|
167 |
+
feature = self.get_features(audio)
|
|
|
|
|
168 |
features.append(feature)
|
169 |
features = torch.cat(features, dim=0)
|
170 |
torch.cuda.empty_cache()
|
171 |
|
172 |
+
y_score = self.model.predict(features.cpu())
|
|
|
|
|
|
|
|
|
|
|
173 |
|
174 |
return y_score if get_proba else (y_score >= 0.5).astype(int)
|
175 |
|
176 |
+
def get_features(self, audios: Tensor):
|
177 |
"""
|
178 |
Extracts features from raw audio using spectrogram and cepstrum transformations.
|
179 |
|
180 |
Parameters
|
181 |
----------
|
182 |
audios : torch.Tensor
|
183 |
+
A batch of audio waveforms as 2D tensors (n_audios, n_samples_per_audio).
|
|
|
|
|
|
|
|
|
184 |
|
185 |
Returns
|
186 |
-------
|
|
|
193 |
If the input audio tensor is empty or invalid.
|
194 |
"""
|
195 |
audios = audios.to(self.device)
|
196 |
+
sxx = self.spectrogram_transformer(audios) # shape : (n_audios, n_f, n_blocks)
|
197 |
sxx = torch.log10(torch.clamp(sxx.permute(0, 2, 1), min=1e-10))
|
198 |
+
cepstral_mat = self.cepstral_transformer(sxx[:, :, self.ind_f_filtered]).squeeze(dim=3)[
|
199 |
:, :, self.ind_cf_filtered
|
200 |
]
|
201 |
|
|
|
209 |
|
210 |
|
211 |
def batch_audio_loader(
|
212 |
+
dataset: Dataset,
|
213 |
+
waveform_duration: int = 3,
|
214 |
+
batch_size: int = 1,
|
215 |
+
sr: int = 12000,
|
216 |
+
device: Literal["cpu", "cuda"] = "cpu",
|
217 |
+
padding_method: None | Literal["zero", "reflect", "replicate", "circular"] = None,
|
218 |
+
offset: int = 0,
|
219 |
):
|
220 |
+
"""Optimized loader for audio data from a dataset for training or inference in batches.
|
|
|
221 |
|
222 |
Parameters
|
223 |
----------
|
224 |
dataset : Dataset
|
225 |
The dataset containing audio samples and labels.
|
226 |
+
waveform_duration : int, optional
|
227 |
Desired duration of the audio waveforms in seconds (default is 3).
|
228 |
batch_size : int, optional
|
229 |
Number of audio samples per batch (default is 1).
|
|
|
238 |
|
239 |
Yields
|
240 |
------
|
241 |
+
tuple (Tensor, Tensor)
|
242 |
A tuple (batch_audios, batch_labels), where:
|
243 |
+
- batch_audios is a torch.tensor of processed audio waveforms.
|
244 |
+
- batch_labels is a torch.tensor of corresponding audio labels.
|
245 |
|
246 |
Raises
|
247 |
------
|
|
|
318 |
yield batch_audios_on_device, batch_labels_on_device
|
319 |
|
320 |
|
321 |
+
def apply_padding(
|
322 |
+
waveform: torch.Tensor,
|
323 |
+
output_size: int,
|
324 |
+
padding_method: Literal["zero", "reflect", "replicate", "circular"] = "zero",
|
325 |
+
) -> torch.Tensor:
|
326 |
"""
|
327 |
Applies padding to the waveform when its size is smaller than the desired output size.
|
328 |
|
|
|
355 |
|
356 |
return F.pad(waveform.unsqueeze(0), (0, total_pad), mode=padding_method).squeeze()
|
357 |
raise ValueError(f"Invalid padding method: {padding_method}")
|
358 |
+
|
359 |
+
|
360 |
+
class FastModelHuggingFace:
|
361 |
+
"""
|
362 |
+
Class for loading a FastModel instance from the Hugging Face Hub.
|
363 |
+
Includes preprocessing pipelines and a LightGBM model.
|
364 |
+
|
365 |
+
Attributes
|
366 |
+
----------
|
367 |
+
pipeline : object
|
368 |
+
The serialized preprocessing pipeline.
|
369 |
+
model : lgb.Booster
|
370 |
+
The LightGBM model instance used for predictions.
|
371 |
+
|
372 |
+
Methods
|
373 |
+
-------
|
374 |
+
from_pretrained(repo_id: str, revision: str = "main",
|
375 |
+
pipeline_file_name: str = "pipeline.pkl",
|
376 |
+
model_file_name: str = "model_lightgbm.txt") -> "FastModelHuggingFace":
|
377 |
+
Loads the FastModel pipeline and model from the Hugging Face Hub.
|
378 |
+
predict(input_data: Union[str, "HuggingFaceDataset"], get_proba: bool = False) -> np.ndarray:
|
379 |
+
Predicts labels or probabilities for a WAV file or dataset.
|
380 |
+
"""
|
381 |
+
|
382 |
+
def __init__(self, pipeline: object, lightgbm_model: lgb.Booster):
|
383 |
+
"""
|
384 |
+
Initializes a FastModelHuggingFace instance.
|
385 |
+
|
386 |
+
Parameters
|
387 |
+
----------
|
388 |
+
pipeline : object
|
389 |
+
The serialized preprocessing pipeline.
|
390 |
+
lightgbm_model : lgb.Booster
|
391 |
+
A LightGBM booster model for predictions.
|
392 |
+
"""
|
393 |
+
self.pipeline = pipeline
|
394 |
+
self.model = lightgbm_model
|
395 |
+
|
396 |
+
@classmethod
|
397 |
+
def from_pretrained(
|
398 |
+
cls,
|
399 |
+
repo_id: str,
|
400 |
+
revision: str = "main",
|
401 |
+
pipeline_file_name: str = "pipeline.pkl",
|
402 |
+
model_file_name: str = "model_lightgbm.txt",
|
403 |
+
) -> "FastModelHuggingFace":
|
404 |
+
"""
|
405 |
+
Loads the FastModel pipeline and LightGBM model from the Hugging Face Hub.
|
406 |
+
|
407 |
+
Parameters
|
408 |
+
----------
|
409 |
+
repo_id : str
|
410 |
+
The Hugging Face repository ID.
|
411 |
+
revision : str, optional
|
412 |
+
The specific revision of the repository to use (default is "main").
|
413 |
+
pipeline_file_name : str, optional
|
414 |
+
The filename of the serialized pipeline (default is "pipeline.pkl").
|
415 |
+
model_file_name : str, optional
|
416 |
+
The filename of the LightGBM model (default is "model_lightgbm.txt").
|
417 |
+
|
418 |
+
Returns
|
419 |
+
-------
|
420 |
+
FastModelHuggingFace
|
421 |
+
A FastModelHuggingFace instance with the loaded pipeline and model.
|
422 |
+
|
423 |
+
Raises
|
424 |
+
------
|
425 |
+
FileNotFoundError
|
426 |
+
If either the pipeline or LightGBM model files are missing or corrupted.
|
427 |
+
"""
|
428 |
+
pipeline_path = hf_hub_download(repo_id, filename=pipeline_file_name, revision=revision)
|
429 |
+
model_lgbm_path = hf_hub_download(repo_id, filename=model_file_name, revision=revision)
|
430 |
+
|
431 |
+
if not os.path.exists(pipeline_path):
|
432 |
+
raise FileNotFoundError(f"Pipeline file {pipeline_path} is missing or corrupted.")
|
433 |
+
with open(pipeline_path, "rb") as f:
|
434 |
+
pipeline = pickle.load(f)
|
435 |
+
|
436 |
+
if not os.path.exists(model_lgbm_path):
|
437 |
+
raise FileNotFoundError(
|
438 |
+
f"LightGBM model file {model_lgbm_path} is missing or corrupted."
|
439 |
+
)
|
440 |
+
lightgbm_model = lgb.Booster(model_file=model_lgbm_path)
|
441 |
+
|
442 |
+
return cls(pipeline=pipeline, lightgbm_model=lightgbm_model)
|
443 |
+
|
444 |
+
def predict(
|
445 |
+
self,
|
446 |
+
input_data: Union[str, "HuggingFaceDataset"],
|
447 |
+
get_proba: bool = False,
|
448 |
+
batch_size: int = 5000,
|
449 |
+
device: Literal["cpu", "cuda"] = "cuda",
|
450 |
+
) -> np.ndarray:
|
451 |
+
"""
|
452 |
+
Predicts labels or probabilities for a given audio input.
|
453 |
+
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
input_data : Union[str, HuggingFaceDataset]
|
457 |
+
The input for prediction, either the path to a WAV file or a Hugging Face dataset.
|
458 |
+
get_proba : bool, optional
|
459 |
+
If True, returns class probabilities instead of binary predictions (default is False).
|
460 |
+
batch_size : int, optional
|
461 |
+
Number of audio samples per batch (default is 5000).
|
462 |
+
device : Literal["cpu", "cuda"]
|
463 |
+
|
464 |
+
Returns
|
465 |
+
-------
|
466 |
+
np.ndarray
|
467 |
+
If `get_proba` is True, returns an array of probabilities.
|
468 |
+
If `get_proba` is False, returns binary predictions.
|
469 |
+
|
470 |
+
Raises
|
471 |
+
------
|
472 |
+
ValueError
|
473 |
+
If the input data type is neither a WAV file path string nor a Hugging Face dataset.
|
474 |
+
"""
|
475 |
+
if isinstance(input_data, str):
|
476 |
+
audio_waveform, sr = torchaudio.load(input_data)
|
477 |
+
audio_waveform = audio_waveform.mean(dim=0)
|
478 |
+
if sr != self.pipeline.audio_processing_params["sample_rate"]:
|
479 |
+
resampler = torchaudio.transforms.Resample(
|
480 |
+
orig_freq=sr, new_freq=self.pipeline.audio_processing_params["sample_rate"]
|
481 |
+
)
|
482 |
+
audio_waveform = resampler(audio_waveform)
|
483 |
+
features = self.pipeline.get_features(audio_waveform.unsqueeze(0).to(device))
|
484 |
+
predictions = self.model.predict(features.cpu().numpy())
|
485 |
+
return predictions if get_proba else (predictions >= 0.5).astype(int)
|
486 |
+
|
487 |
+
elif hasattr(input_data, "_data"):
|
488 |
+
features = []
|
489 |
+
for batch_audios, _ in self.pipeline.batch_audio_loader(
|
490 |
+
input_data,
|
491 |
+
waveform_duration=self.pipeline.audio_processing_params["duration"],
|
492 |
+
batch_size=batch_size,
|
493 |
+
padding_method=self.pipeline.audio_processing_params["padding_method"],
|
494 |
+
device=device,
|
495 |
+
):
|
496 |
+
batch_features = self.pipeline.get_features(batch_audios)
|
497 |
+
features.append(batch_features)
|
498 |
+
features = torch.cat(features, dim=0)
|
499 |
+
predictions = self.model.predict(features.cpu().numpy())
|
500 |
+
return predictions if get_proba else (predictions >= 0.5).astype(int)
|
501 |
+
else:
|
502 |
+
raise ValueError("Input must be either a path to a WAV file or a Hugging Face Dataset.")
|
503 |
+
|
504 |
+
|
505 |
+
def save_pipeline(
|
506 |
+
model_class_instance: FastModelHuggingFace,
|
507 |
+
path: str,
|
508 |
+
lgbm_file_name: str = None,
|
509 |
+
pipeline_file_name: str = None,
|
510 |
+
):
|
511 |
+
"""
|
512 |
+
Serializes the complete FastModel instance for saving.
|
513 |
+
|
514 |
+
Parameters
|
515 |
+
----------
|
516 |
+
model_class_instance : FastModelHuggingFace
|
517 |
+
The trained FastModel instance to serialize.
|
518 |
+
path : str
|
519 |
+
The directory to save the FastModel instance.
|
520 |
+
lgbm_file_name : str, optional
|
521 |
+
The filename for saving the LightGBM model (default is "model_fast_model.txt").
|
522 |
+
pipeline_file_name : str, optional
|
523 |
+
The filename for saving the pipeline (default is "pipeline.pkl").
|
524 |
+
"""
|
525 |
+
lgbm_file_name = lgbm_file_name or "model_fast_model.txt"
|
526 |
+
pipeline_file_name = pipeline_file_name or "pipeline.pkl"
|
527 |
+
|
528 |
+
lightgbm_path = Path(path) / lgbm_file_name
|
529 |
+
if model_class_instance.model:
|
530 |
+
model_class_instance.model_file_name = str(lightgbm_path)
|
531 |
+
model_class_instance.model.save_model(model_class_instance.model_file_name)
|
532 |
+
|
533 |
+
pipeline_path = Path(path) / pipeline_file_name
|
534 |
+
with open(pipeline_path, "wb") as f:
|
535 |
+
pickle.dump(model_class_instance, f)
|
536 |
+
|
537 |
+
|
538 |
+
def load_pipeline(
|
539 |
+
path: str, lgbm_file_name: str = None, pipeline_file_name: str = None
|
540 |
+
) -> FastModelHuggingFace:
|
541 |
+
"""
|
542 |
+
Loads a serialized pipeline and LightGBM model.
|
543 |
+
|
544 |
+
Parameters
|
545 |
+
----------
|
546 |
+
path : str
|
547 |
+
The directory containing the serialized FastModel.
|
548 |
+
lgbm_file_name : str, optional
|
549 |
+
The filename for the LightGBM model (default is "model_fast_model.txt").
|
550 |
+
pipeline_file_name : str, optional
|
551 |
+
The filename for the pipeline (default is "pipeline.pkl").
|
552 |
+
|
553 |
+
Returns
|
554 |
+
-------
|
555 |
+
FastModelHuggingFace
|
556 |
+
An instance of the loaded FastModel.
|
557 |
+
|
558 |
+
Raises
|
559 |
+
------
|
560 |
+
FileNotFoundError
|
561 |
+
If either the LightGBM model or pipeline file is not found.
|
562 |
+
"""
|
563 |
+
lgbm_file_name = lgbm_file_name or "model_fast_model.txt"
|
564 |
+
pipeline_file_name = pipeline_file_name or "pipeline.pkl"
|
565 |
+
|
566 |
+
pipeline_path = Path(path) / pipeline_file_name
|
567 |
+
if not pipeline_path.exists():
|
568 |
+
raise FileNotFoundError(f"Pipeline file {pipeline_path} not found.")
|
569 |
+
with open(pipeline_path, "rb") as f:
|
570 |
+
model_class_instance = pickle.load(f)
|
571 |
+
|
572 |
+
lightgbm_path = Path(path) / lgbm_file_name
|
573 |
+
if not lightgbm_path.exists():
|
574 |
+
raise FileNotFoundError(f"LightGBM file {lightgbm_path} not found.")
|
575 |
+
model_class_instance.model = lgb.Booster(model_file=str(lightgbm_path))
|
576 |
+
|
577 |
+
return model_class_instance
|
model/features.json
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"n_fft": 512,
|
3 |
-
"hop_length": 256,
|
4 |
-
"pad": 0,
|
5 |
-
"win_spectrogram": "Hamming Window",
|
6 |
-
"win_cepstral": "Hamming Window",
|
7 |
-
"power": 2,
|
8 |
-
"pad_mode": "reflect",
|
9 |
-
"f_min": 70,
|
10 |
-
"f_max": 1525,
|
11 |
-
"fc_min": 0.05,
|
12 |
-
"fc_max": 0.8,
|
13 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/lgbm_params.json
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"objective": "binary",
|
3 |
-
"metric": "binary_logloss",
|
4 |
-
"boosting_type": "gbdt",
|
5 |
-
"learning_rate": 0.1,
|
6 |
-
"num_leaves": 75,
|
7 |
-
"max_depth": -1,
|
8 |
-
"feature_fraction": 0.8,
|
9 |
-
"bagging_fraction": 0.8,
|
10 |
-
"bagging_freq": 5,
|
11 |
-
"verbosity": -1,
|
12 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
model/model.txt → model_fast_model.txt
RENAMED
File without changes
|
pipeline.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3243c0fd7f6cafa8492132711b0376da91838029cfe1362e2fc19ee6bf847894
|
3 |
+
size 834063
|