QuefrencyGuardian / model.py
tlemagueresse
Replace pkl by joblib
45ee714
import os
import struct
from pathlib import Path
from typing import Literal, Union
import numpy as np
import torch
import lightgbm as lgb
import torchaudio
from huggingface_hub import hf_hub_download
from joblib import dump, load
from sklearn.exceptions import NotFittedError
from torch import Tensor
from torchaudio.transforms import Spectrogram
import torch.nn.functional as F
from datasets.formatting import query_table
from datasets import Dataset
import warnings
warnings.filterwarnings("ignore")
SR = 12000
class FastModel:
"""
A class designed for training and predicting using LightGBM, incorporating spectral and cepstral features.
Workflow:
1. Batch Loading and Decoding:
Load audio data in batches directly from a table and decode byte-encoded information.
2. Processing Audio:
- Resampling, Padding, or Truncating:
Adjust audio durations by padding, cutting, or resampling as needed.
- Spectral and Cepstral Feature Extraction:
- Compute the spectrogram for audio signals.
- Focus on a selected frequency range (~50-1500 Hz) to derive the cepstrum, calculated as the FFT of the logarithm of the spectrogram.
- Average both spectrogram and cepstral features over the time axis and combine them into a unified feature vector.
3. Model Application:
Use the extracted features as input for the LightGBM model to perform predictions.
Attributes
----------
audio_processing_params : dict
Parameters for configuring audio processing.
feature_params : dict
Parameters for configuring the Spectrogram and Cepstrogram transformation.
lgbm_params : dict, optional
Parameters for configuring the LightGBM model.
device : str
Device used for computation ("cpu" or "cuda").
"""
def __init__(
self,
audio_processing_params: dict,
feature_params: dict,
lgbm_params: dict,
device: str = "cuda",
):
self.audio_processing_params = audio_processing_params
self.feature_params = feature_params
self.lgbm_params = lgbm_params
self.device = torch.device(
"cuda" if device == "cuda" and torch.cuda.is_available() else "cpu"
)
self.model = None
# Initialize Spectrogram & Cepstrogram
self.spectrogram_transformer = Spectrogram(
n_fft=self.feature_params["n_fft"],
hop_length=self.feature_params["hop_length"],
pad=self.feature_params["pad"],
window_fn=torch.hamming_window,
power=self.feature_params["power"],
pad_mode=self.feature_params["pad_mode"],
onesided=True,
center=False,
).to(self.device)
self.f = torch.fft.rfftfreq(self.feature_params["n_fft"], d=1.0 / SR)
self.ind_f_filtered = torch.tensor(
(self.f > self.feature_params["f_min"]) & (self.f < self.feature_params["f_max"]),
device=self.device,
)
self.n_fft_cepstral = self.ind_f_filtered.sum()
self.cepstral_transformer = Spectrogram(
n_fft=self.n_fft_cepstral,
hop_length=self.n_fft_cepstral,
pad=0,
window_fn=torch.hamming_window,
power=self.feature_params["power"],
pad_mode=self.feature_params["pad_mode"],
onesided=True,
center=False,
).to(self.device)
self.cf = torch.fft.rfftfreq(self.n_fft_cepstral, d=0.5)
self.ind_cf_filtered = torch.tensor(
(self.cf > self.feature_params["fc_min"]) & (self.cf < self.feature_params["fc_max"]),
device=self.device,
)
def fit(self, dataset: Dataset, batch_size: int = 5000):
"""Trains a LightGBM model on features extracted from the dataset.
Parameters
----------
dataset : Dataset
Arrow Dataset object containing audio samples and their corresponding labels.
batch_size : int, optional
Number of audio samples per batch (default is 5000).
Raises
------
ValueError
If the dataset is empty or invalid.
"""
features, labels = [], []
for audio, label in self.batch_audio_loader(
dataset,
batch_size=batch_size,
):
feature = self.get_features(audio)
features.append(feature)
labels.extend(label)
x_train = torch.cat(features, dim=0)
train_data = lgb.Dataset(x_train.cpu(), label=labels)
self.model = lgb.train(self.lgbm_params, train_data)
def predict(self, dataset: Dataset, get_proba: bool = False, batch_size: int = 5000):
"""Predicts labels or probabilities for a dataset using the trained model.
Parameters
----------
dataset : Dataset
The dataset containing audio data for prediction.
get_proba : bool, optional
If True, returns class probabilities rather than binary predictions (default is False).
batch_size : int, optional
Number of audio samples per batch (default is 5000).
Returns
-------
numpy.ndarray
If `get_proba` is True, returns a 1D array of class probabilities.
If `get_proba` is False, returns a 1D array of binary predictions (0 or 1).
Raises
------
NotFittedError
If the model is not yet trained.
"""
if not self.model:
raise NotFittedError("LGBM model is not fitted yet.")
features = []
for audio, _ in self.batch_audio_loader(
dataset,
batch_size=batch_size,
):
feature = self.get_features(audio)
features.append(feature)
features = torch.cat(features, dim=0)
torch.cuda.empty_cache()
y_score = self.model.predict(features.cpu())
return y_score if get_proba else (y_score >= 0.5).astype(int)
def get_features(self, audios: Tensor):
"""
Extracts features from raw audio using spectrogram and cepstrum transformations.
Parameters
----------
audios : torch.Tensor
A batch of audio waveforms as 2D tensors (n_audios, n_samples_per_audio).
Returns
-------
torch.Tensor
Extracted features for the audio batch. Includes both cepstral and log-scaled spectrogram features.
Raises
------
ValueError
If the input audio tensor is empty or invalid.
"""
audios = audios.to(self.device)
sxx = self.spectrogram_transformer(audios) # shape : (n_audios, n_f, n_blocks)
sxx = torch.log10(torch.clamp(sxx.permute(0, 2, 1), min=1e-10))
cepstral_mat = self.cepstral_transformer(sxx[:, :, self.ind_f_filtered]).squeeze(dim=3)[
:, :, self.ind_cf_filtered
]
return torch.cat(
[
cepstral_mat.mean(dim=1),
sxx.mean(dim=1),
],
dim=1,
)
def batch_audio_loader(
self, dataset: Dataset, batch_size: int = 1, offset: int = 0, device="cpu"
):
"""Optimized loader for audio data from a dataset for training or inference in batches.
Parameters
----------
dataset : Dataset
The dataset containing audio samples and labels.
waveform_duration : int, optional
Desired duration of the audio waveforms in seconds (default is 3).
batch_size : int, optional
Number of audio samples per batch (default is 1).
sr : int, optional
Target sampling rate for audio processing (default is 12000).
device : str, optional
Device for processing ("cpu" or "cuda") (default is "cpu").
padding_method : str, optional
Method to pad audio waveforms smaller than the desired size (e.g., "zero", "reflect").
offset : int, optional
Number of samples to skip before processing the first audio sample (default is 0).
Yields
------
tuple (Tensor, Tensor)
A tuple (batch_audios, batch_labels), where:
- batch_audios is a torch.tensor of processed audio waveforms.
- batch_labels is a torch.tensor of corresponding audio labels.
Raises
------
ValueError
If an unsupported sampling rate is encountered in the dataset.
"""
def process_resampling(resample_buffer, resample_indices, batch_audios, sr, target_sr):
if resample_buffer:
resampler = torchaudio.transforms.Resample(
orig_freq=sr, new_freq=target_sr, lowpass_filter_width=6
)
resampled = resampler(torch.stack(resample_buffer))
for idx, original_idx in enumerate(resample_indices):
batch_audios[original_idx] = resampled[idx]
# For readability
sr = self.audio_processing_params["sample_rate"]
waveform_duration = self.audio_processing_params["duration"]
padding_method = self.audio_processing_params["padding_method"]
device = torch.device(
"cuda" if device == "cuda" and torch.cuda.is_available() else "cpu"
)
batch_audios, batch_labels = [], []
resample_24000, resample_24000_indices = [], []
for i in range(len(dataset)):
pa_subtable = query_table(dataset._data, i, indices=dataset._indices)
wav_bytes = pa_subtable[0][0][0].as_py()
sampling_rate = struct.unpack("<I", wav_bytes[24:28])[0]
if sampling_rate not in [sr, sr * 2]:
raise ValueError(
f"Unsupported sampling rate: {sampling_rate}Hz. Only {sr}Hz and {sr * 2}Hz are allowed."
)
data_size = struct.unpack("<I", wav_bytes[40:44])[0] // 2
if data_size == 0:
batch_audios.append(torch.zeros(int(waveform_duration * SR)))
else:
try:
waveform = (
torch.frombuffer(wav_bytes[44:], dtype=torch.int16, offset=offset)[
: int(waveform_duration * sampling_rate)
].float()
/ 32767
)
except Exception as e:
continue # May append during fit for small audios. offset is set to 0 during predict.
waveform = apply_padding(
waveform, int(waveform_duration * sampling_rate), padding_method
)
if sampling_rate == sr:
batch_audios.append(waveform)
elif sampling_rate == 2 * sr:
resample_24000.append(waveform)
resample_24000_indices.append(len(batch_audios))
batch_audios.append(None)
batch_labels.append(pa_subtable[1][0].as_py())
if len(batch_audios) == batch_size:
# Perform resampling once and take advantage of Torch's vectorization capabilities.
process_resampling(resample_24000, resample_24000_indices, batch_audios, sr * 2, SR)
batch_audios_on_device = torch.stack(batch_audios).to(device)
batch_labels_on_device = torch.tensor(batch_labels).to(device)
yield batch_audios_on_device, batch_labels_on_device
batch_audios, batch_labels = [], []
resample_24000, resample_24000_indices = [], []
if batch_audios:
process_resampling(resample_24000, resample_24000_indices, batch_audios, sr * 2, SR)
batch_audios_on_device = torch.stack(batch_audios).to(device)
batch_labels_on_device = torch.tensor(batch_labels).to(device)
yield batch_audios_on_device, batch_labels_on_device
def apply_padding(
waveform: torch.Tensor,
output_size: int,
padding_method: Literal["zero", "reflect", "replicate", "circular"] = "zero",
) -> torch.Tensor:
"""
Applies padding to the waveform when its size is smaller than the desired output size.
Parameters
----------
waveform : torch.Tensor
Input 1D waveform tensor.
output_size : int
Desired output size after padding or truncation.
padding_method : str, default="zero"
Padding method to apply.
Returns
-------
torch.Tensor
Padded or truncated waveform of size `output_size`.
"""
if waveform.size(0) >= output_size:
return waveform[:output_size]
total_pad = output_size - waveform.size(0)
if padding_method == "zero":
return F.pad(waveform, (0, total_pad), mode="constant", value=0)
if padding_method in ["reflect", "replicate", "circular"]:
# Pad not possible if waveform.size(0) < total_pad.
if waveform.size(0) < total_pad:
num_repeats = (total_pad // waveform.size(0)) + 1
waveform = torch.tile(waveform, (num_repeats,))
total_pad = output_size - waveform.size(0)
return F.pad(waveform.unsqueeze(0), (0, total_pad), mode=padding_method).squeeze()
raise ValueError(f"Invalid padding method: {padding_method}")
class FastModelHuggingFace:
"""
Class for loading a FastModel instance from the Hugging Face Hub.
Includes preprocessing pipelines and a LightGBM model.
Attributes
----------
pipeline : object
The serialized preprocessing pipeline.
model : lgb.Booster
The LightGBM model instance used for predictions.
Methods
-------
from_pretrained(repo_id: str, revision: str = "main",
pipeline_file_name: str = "pipeline.joblib",
model_file_name: str = "model_lightgbm.txt") -> "FastModelHuggingFace":
Loads the FastModel pipeline and model from the Hugging Face Hub.
predict(input_data: Union[str, "HuggingFaceDataset"], get_proba: bool = False) -> np.ndarray:
Predicts labels or probabilities for a WAV file or dataset.
"""
def __init__(self, pipeline: object, lightgbm_model: lgb.Booster):
"""
Initializes a FastModelHuggingFace instance.
Parameters
----------
pipeline : object
The serialized preprocessing pipeline.
lightgbm_model : lgb.Booster
A LightGBM booster model for predictions.
"""
self.pipeline = pipeline
self.model = lightgbm_model
@classmethod
def from_pretrained(
cls,
repo_id: str,
revision: str = "main",
pipeline_file_name: str = "pipeline.joblib",
model_file_name: str = "model_lightgbm.txt",
) -> "FastModelHuggingFace":
"""
Loads the FastModel pipeline and LightGBM model from the Hugging Face Hub.
Parameters
----------
repo_id : str
The Hugging Face repository ID.
revision : str, optional
The specific revision of the repository to use (default is "main").
pipeline_file_name : str, optional
The filename of the serialized pipeline (default is "pipeline.joblib").
model_file_name : str, optional
The filename of the LightGBM model (default is "model_lightgbm.txt").
Returns
-------
FastModelHuggingFace
A FastModelHuggingFace instance with the loaded pipeline and model.
Raises
------
FileNotFoundError
If either the pipeline or LightGBM model files are missing or corrupted.
"""
pipeline_path = hf_hub_download(repo_id, filename=pipeline_file_name, revision=revision)
model_lgbm_path = hf_hub_download(repo_id, filename=model_file_name, revision=revision)
if not os.path.exists(pipeline_path):
raise FileNotFoundError(f"Pipeline file {pipeline_path} is missing or corrupted.")
pipeline = load(pipeline_path)
if not os.path.exists(model_lgbm_path):
raise FileNotFoundError(
f"LightGBM model file {model_lgbm_path} is missing or corrupted."
)
lightgbm_model = lgb.Booster(model_file=model_lgbm_path)
return cls(pipeline=pipeline, lightgbm_model=lightgbm_model)
def predict(
self,
input_data: Union[str, "HuggingFaceDataset"],
get_proba: bool = False,
batch_size: int = 5000,
device: Literal["cpu", "cuda"] = "cuda",
) -> np.ndarray:
"""
Predicts labels or probabilities for a given audio input.
Parameters
----------
input_data : Union[str, HuggingFaceDataset]
The input for prediction, either the path to a WAV file or a Hugging Face dataset.
get_proba : bool, optional
If True, returns class probabilities instead of binary predictions (default is False).
batch_size : int, optional
Number of audio samples per batch (default is 5000).
device : Literal["cpu", "cuda"]
Returns
-------
np.ndarray
If `get_proba` is True, returns an array of probabilities.
If `get_proba` is False, returns binary predictions.
Raises
------
ValueError
If the input data type is neither a WAV file path string nor a Hugging Face dataset.
"""
if isinstance(input_data, str):
audio_waveform, sr = torchaudio.load(input_data)
audio_waveform = audio_waveform.mean(dim=0)
if sr != self.pipeline.audio_processing_params["sample_rate"]:
resampler = torchaudio.transforms.Resample(
orig_freq=sr, new_freq=self.pipeline.audio_processing_params["sample_rate"]
)
audio_waveform = resampler(audio_waveform)
features = self.pipeline.get_features(audio_waveform.unsqueeze(0).to(device))
predictions = self.model.predict(features.cpu().numpy())
return predictions if get_proba else (predictions >= 0.5).astype(int)
elif hasattr(input_data, "_data"):
features = []
for batch_audios, _ in self.pipeline.batch_audio_loader(
input_data,
batch_size=batch_size,
device=device,
):
batch_features = self.pipeline.get_features(batch_audios)
features.append(batch_features)
features = torch.cat(features, dim=0)
predictions = self.model.predict(features.cpu().numpy())
return predictions if get_proba else (predictions >= 0.5).astype(int)
else:
raise ValueError("Input must be either a path to a WAV file or a Hugging Face Dataset.")
def save_pipeline(
model_class_instance: FastModel,
path: str,
lgbm_file_name: str = None,
pipeline_file_name: str = None,
):
"""
Serializes the complete FastModel instance for saving.
Parameters
----------
model_class_instance : FastModelHuggingFace
The trained FastModel instance to serialize.
path : str
The directory to save the FastModel instance.
lgbm_file_name : str, optional
The filename for saving the LightGBM model (default is "model_fast_model.txt").
pipeline_file_name : str, optional
The filename for saving the pipeline (default is "pipeline.joblib").
"""
lgbm_file_name = lgbm_file_name or "model_lightgbm.txt"
pipeline_file_name = pipeline_file_name or "pipeline.joblib"
lightgbm_path = Path(path) / lgbm_file_name
if model_class_instance.model:
model_class_instance.model_file_name = str(lightgbm_path)
model_class_instance.model.save_model(model_class_instance.model_file_name)
pipeline_path = Path(path) / pipeline_file_name
dump(model_class_instance, pipeline_path)
def load_pipeline(
path: str, lgbm_file_name: str = None, pipeline_file_name: str = None
) -> FastModelHuggingFace:
"""
Loads a serialized pipeline and LightGBM model.
Parameters
----------
path : str
The directory containing the serialized FastModel.
lgbm_file_name : str, optional
The filename for the LightGBM model (default is "model_fast_model.txt").
pipeline_file_name : str, optional
The filename for the pipeline (default is "pipeline.joblib").
Returns
-------
FastModelHuggingFace
An instance of the loaded FastModel.
Raises
------
FileNotFoundError
If either the LightGBM model or pipeline file is not found.
"""
lgbm_file_name = lgbm_file_name or "model_fast_model.txt"
pipeline_file_name = pipeline_file_name or "pipeline.joblib"
pipeline_path = Path(path) / pipeline_file_name
if not pipeline_path.exists():
raise FileNotFoundError(f"Pipeline file {pipeline_path} not found.")
model_class_instance = load(pipeline_path)
lightgbm_path = Path(path) / lgbm_file_name
if not lightgbm_path.exists():
raise FileNotFoundError(f"LightGBM file {lightgbm_path} not found.")
model_class_instance.model = lgb.Booster(model_file=str(lightgbm_path))
return model_class_instance