File size: 2,594 Bytes
57465d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: working
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# working

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2584
- Wer: 0.6024
- Cer: 0.0723

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- training_steps: 70000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
| 2.0401        | 1.49  | 1000  | 1.3913          | 0.9911 | 0.4127 |
| 1.2772        | 2.98  | 2000  | 0.4117          | 0.7644 | 0.1036 |
| 1.0861        | 4.46  | 3000  | 0.3281          | 0.6962 | 0.0868 |
| 1.0803        | 5.95  | 4000  | 0.2970          | 0.6645 | 0.0796 |
| 1.0256        | 7.44  | 5000  | 0.2986          | 0.6556 | 0.0820 |
| 0.9536        | 8.93  | 6000  | 0.2873          | 0.6418 | 0.0767 |
| 0.9154        | 10.42 | 7000  | 0.3896          | 0.6450 | 0.0812 |
| 0.9187        | 11.9  | 8000  | 0.2946          | 0.6239 | 0.0771 |
| 0.8693        | 13.39 | 9000  | 0.2655          | 0.6093 | 0.0746 |
| 0.8335        | 14.88 | 10000 | 0.2797          | 0.6052 | 0.0764 |
| 0.8461        | 16.37 | 11000 | 0.2879          | 0.6231 | 0.0766 |
| 0.8363        | 17.86 | 12000 | 0.2616          | 0.6052 | 0.0726 |
| 0.796         | 19.35 | 13000 | 0.2656          | 0.6109 | 0.0740 |
| 0.8136        | 20.83 | 14000 | 0.2773          | 0.6255 | 0.0747 |
| 0.7319        | 22.32 | 15000 | 0.2770          | 0.6214 | 0.0748 |
| 0.7428        | 23.81 | 16000 | 0.2697          | 0.6052 | 0.0746 |
| 0.7264        | 25.3  | 17000 | 0.2716          | 0.5971 | 0.0733 |


### Framework versions

- Transformers 4.17.0
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0