File size: 3,056 Bytes
f7b226c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
license: apache-2.0
tags:
- generated_from_trainer
model-index:
- name: gopdatastt_add_transformer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gopdatastt_add_transformer

This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0920
- Wer: 0.1617

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 30
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer    |
|:-------------:|:-----:|:-----:|:---------------:|:------:|
| 3.1709        | 1.05  | 500   | 0.1453          | 0.2194 |
| 0.3131        | 2.11  | 1000  | 0.1094          | 0.2055 |
| 0.276         | 3.16  | 1500  | 0.1198          | 0.1998 |
| 0.2416        | 4.21  | 2000  | 0.1873          | 0.2026 |
| 0.2093        | 5.26  | 2500  | 0.1392          | 0.1974 |
| 0.1987        | 6.32  | 3000  | 0.1123          | 0.1944 |
| 0.1714        | 7.37  | 3500  | 0.1089          | 0.1890 |
| 0.1634        | 8.42  | 4000  | 0.1007          | 0.1863 |
| 0.1459        | 9.47  | 4500  | 0.1340          | 0.1864 |
| 0.1461        | 10.53 | 5000  | 0.1016          | 0.1874 |
| 0.1316        | 11.58 | 5500  | 0.1110          | 0.1891 |
| 0.1318        | 12.63 | 6000  | 0.0942          | 0.1855 |
| 0.1084        | 13.68 | 6500  | 0.0992          | 0.1827 |
| 0.1064        | 14.74 | 7000  | 0.1010          | 0.1801 |
| 0.1059        | 15.79 | 7500  | 0.1173          | 0.1834 |
| 0.094         | 16.84 | 8000  | 0.1096          | 0.1815 |
| 0.0918        | 17.89 | 8500  | 0.1046          | 0.1780 |
| 0.0874        | 18.95 | 9000  | 0.1103          | 0.1788 |
| 0.0813        | 20.0  | 9500  | 0.1065          | 0.1768 |
| 0.0753        | 21.05 | 10000 | 0.0997          | 0.1747 |
| 0.0729        | 22.11 | 10500 | 0.1053          | 0.1748 |
| 0.0655        | 23.16 | 11000 | 0.1042          | 0.1726 |
| 0.0647        | 24.21 | 11500 | 0.0960          | 0.1746 |
| 0.0581        | 25.26 | 12000 | 0.1060          | 0.1733 |
| 0.0573        | 26.32 | 12500 | 0.0972          | 0.1706 |
| 0.0524        | 27.37 | 13000 | 0.0963          | 0.1725 |
| 0.0577        | 28.42 | 13500 | 0.0920          | 0.1696 |
| 0.0488        | 29.47 | 14000 | 0.0942          | 0.1686 |


### Framework versions

- Transformers 4.17.0
- Pytorch 2.5.1+cu121
- Datasets 1.18.3
- Tokenizers 0.20.3