tinybee commited on
Commit
ea9f496
·
1 Parent(s): 48a6cce

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: finetune_add_transformer
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # finetune_add_transformer
14
+
15
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.2934
18
+ - Cer: 0.0724
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 3e-05
38
+ - train_batch_size: 8
39
+ - eval_batch_size: 8
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 4
42
+ - total_train_batch_size: 32
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 2000
46
+ - training_steps: 10000
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Cer |
52
+ |:-------------:|:------:|:-----:|:---------------:|:------:|
53
+ | 4.2464 | 5.95 | 500 | 0.7569 | 0.2284 |
54
+ | 0.5463 | 11.9 | 1000 | 0.3276 | 0.0814 |
55
+ | 0.3545 | 17.86 | 1500 | 0.3084 | 0.0779 |
56
+ | 0.2841 | 23.81 | 2000 | 0.3200 | 0.0756 |
57
+ | 0.232 | 29.76 | 2500 | 0.3181 | 0.0735 |
58
+ | 0.1922 | 35.71 | 3000 | 0.3480 | 0.0731 |
59
+ | 0.1601 | 41.67 | 3500 | 0.3990 | 0.0742 |
60
+ | 0.1362 | 47.62 | 4000 | 0.4304 | 0.0736 |
61
+ | 0.1165 | 53.57 | 4500 | 0.4847 | 0.0746 |
62
+ | 0.0994 | 59.52 | 5000 | 0.5250 | 0.0761 |
63
+ | 0.0876 | 65.48 | 5500 | 0.5628 | 0.0740 |
64
+ | 0.0791 | 71.43 | 6000 | 0.5871 | 0.0742 |
65
+ | 0.0716 | 77.38 | 6500 | 0.5933 | 0.0729 |
66
+ | 0.0661 | 83.33 | 7000 | 0.6238 | 0.0739 |
67
+ | 0.0605 | 89.29 | 7500 | 0.6623 | 0.0742 |
68
+ | 0.0569 | 95.24 | 8000 | 0.6638 | 0.0729 |
69
+ | 0.0535 | 101.19 | 8500 | 0.6681 | 0.0730 |
70
+ | 0.0498 | 107.14 | 9000 | 0.6815 | 0.0733 |
71
+ | 0.0491 | 113.1 | 9500 | 0.6818 | 0.0733 |
72
+ | 0.0471 | 119.05 | 10000 | 0.6810 | 0.0732 |
73
+
74
+
75
+ ### Framework versions
76
+
77
+ - Transformers 4.17.0
78
+ - Pytorch 2.4.0
79
+ - Datasets 3.0.1
80
+ - Tokenizers 0.20.0