Upload folder using huggingface_hub
Browse files- README.md +236 -0
- chat_template.jinja +20 -0
- config.json +62 -0
- generation_config.json +9 -0
- model.safetensors +3 -0
- processor_config.json +6 -0
- special_tokens_map.json +23 -0
- tokenizer.json +0 -0
- tokenizer_config.json +0 -0
README.md
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
pipeline_tag: text-generation
|
4 |
+
inference: true
|
5 |
+
widget:
|
6 |
+
- text: Hello!
|
7 |
+
example_title: Hello world
|
8 |
+
group: Python
|
9 |
+
base_model:
|
10 |
+
- stepfun-ai/step3
|
11 |
+
---
|
12 |
+
|
13 |
+
This tiny model is for debugging. It is randomly initialized with the config adapted from [stepfun-ai/step3](https://huggingface.co/stepfun-ai/step3).
|
14 |
+
|
15 |
+
Note: For vLLM supported version, see [tiny-random/step3-vllm](https://huggingface.co/tiny-random/step3-vllm).
|
16 |
+
|
17 |
+
### Example usage:
|
18 |
+
|
19 |
+
```python
|
20 |
+
import torch
|
21 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
22 |
+
|
23 |
+
model_id = "tiny-random/step3"
|
24 |
+
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
|
25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
26 |
+
model_id,
|
27 |
+
device_map="cuda", torch_dtype=torch.bfloat16,
|
28 |
+
trust_remote_code=True,
|
29 |
+
)
|
30 |
+
messages = [
|
31 |
+
{
|
32 |
+
"role": "user",
|
33 |
+
"content": [
|
34 |
+
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
|
35 |
+
{"type": "text", "text": "What's in this picture?"}
|
36 |
+
]
|
37 |
+
},
|
38 |
+
]
|
39 |
+
inputs = processor.apply_chat_template(
|
40 |
+
messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt"
|
41 |
+
).to(model.device)
|
42 |
+
generate_ids = model.generate(**inputs, max_new_tokens=32, do_sample=False)
|
43 |
+
decoded = processor.decode(generate_ids[0, inputs["input_ids"].shape[-1]:], skip_special_tokens=False)
|
44 |
+
print(decoded)
|
45 |
+
```
|
46 |
+
|
47 |
+
### Codes to create this repo:
|
48 |
+
|
49 |
+
```python
|
50 |
+
import json
|
51 |
+
from pathlib import Path
|
52 |
+
|
53 |
+
import accelerate
|
54 |
+
import torch
|
55 |
+
from huggingface_hub import file_exists, hf_hub_download
|
56 |
+
from transformers import (
|
57 |
+
AutoConfig,
|
58 |
+
AutoModelForCausalLM,
|
59 |
+
AutoProcessor,
|
60 |
+
AutoTokenizer,
|
61 |
+
GenerationConfig,
|
62 |
+
set_seed,
|
63 |
+
)
|
64 |
+
|
65 |
+
source_model_id = "stepfun-ai/step3"
|
66 |
+
save_folder = "/tmp/tiny-random/step3"
|
67 |
+
|
68 |
+
processor = AutoProcessor.from_pretrained(source_model_id, trust_remote_code=True)
|
69 |
+
processor.save_pretrained(save_folder)
|
70 |
+
|
71 |
+
def rewrite_automap(filepath: str, source_model_id: str, overrides: dict = None):
|
72 |
+
import json
|
73 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
74 |
+
config = json.load(f)
|
75 |
+
for k, v in config['auto_map'].items():
|
76 |
+
v = v.split('--')[-1]
|
77 |
+
config['auto_map'][k] = f'{source_model_id}--{v}'
|
78 |
+
if overrides is not None:
|
79 |
+
config.update(overrides)
|
80 |
+
with open(filepath, 'w', encoding='utf - 8') as f:
|
81 |
+
json.dump(config, f, indent=2)
|
82 |
+
|
83 |
+
rewrite_automap(f'{save_folder}/processor_config.json', source_model_id)
|
84 |
+
rewrite_automap(f'{save_folder}/tokenizer_config.json', source_model_id)
|
85 |
+
|
86 |
+
with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f:
|
87 |
+
config_json = json.load(f)
|
88 |
+
|
89 |
+
for k, v in config_json['auto_map'].items():
|
90 |
+
config_json['auto_map'][k] = f'{source_model_id}--{v}'
|
91 |
+
config_json['architectures'] = ["Step3VLForConditionalGeneration"]
|
92 |
+
config_json['text_config'].update({
|
93 |
+
"hidden_size": 32,
|
94 |
+
"intermediate_size": 64,
|
95 |
+
"num_hidden_layers": 2,
|
96 |
+
"num_attention_heads": 2,
|
97 |
+
"num_attention_groups": 1,
|
98 |
+
"head_dim": 256,
|
99 |
+
"share_q_dim": 512,
|
100 |
+
"moe_layers_enum": "1",
|
101 |
+
"moe_num_experts": 8,
|
102 |
+
"moe_top_k": 3,
|
103 |
+
"moe_intermediate_size": 64,
|
104 |
+
"share_expert_dim": 64,
|
105 |
+
"tie_word_embeddings": True,
|
106 |
+
})
|
107 |
+
config_json['vision_config'].update({
|
108 |
+
"hidden_size": 64,
|
109 |
+
"output_hidden_size": 64,
|
110 |
+
"intermediate_size": 128,
|
111 |
+
"num_hidden_layers": 2,
|
112 |
+
"num_attention_heads": 2
|
113 |
+
})
|
114 |
+
|
115 |
+
with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f:
|
116 |
+
json.dump(config_json, f, indent=2)
|
117 |
+
config = AutoConfig.from_pretrained(
|
118 |
+
save_folder,
|
119 |
+
trust_remote_code=True,
|
120 |
+
)
|
121 |
+
print(config)
|
122 |
+
# key_mapping = {
|
123 |
+
# "^vision_model": "model.vision_model",
|
124 |
+
# r"^model(?!\.(language_model|vision_model))": "model.language_model",
|
125 |
+
# "vit_downsampler": "model.vit_downsampler",
|
126 |
+
# "vit_downsampler2": "model.vit_downsampler2",
|
127 |
+
# "vit_large_projector": "model.vit_large_projector",
|
128 |
+
# }
|
129 |
+
automap = config_json['auto_map']
|
130 |
+
torch.set_default_dtype(torch.bfloat16)
|
131 |
+
model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
|
132 |
+
torch.set_default_dtype(torch.float32)
|
133 |
+
if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'):
|
134 |
+
model.generation_config = GenerationConfig.from_pretrained(
|
135 |
+
source_model_id, trust_remote_code=True,
|
136 |
+
)
|
137 |
+
set_seed(42)
|
138 |
+
model = model.cpu() # cpu is more stable for random initialization across machines
|
139 |
+
with torch.no_grad():
|
140 |
+
for name, p in sorted(model.named_parameters()):
|
141 |
+
torch.nn.init.normal_(p, 0, 0.2)
|
142 |
+
print(name, p.shape)
|
143 |
+
model.save_pretrained(save_folder)
|
144 |
+
print(model)
|
145 |
+
rewrite_automap(f'{save_folder}/config.json', source_model_id)
|
146 |
+
|
147 |
+
for python_file in Path(save_folder).glob('*.py'):
|
148 |
+
if python_file.name.startswith('modeling_') or python_file.name.startswith('configuration_') or python_file.name.endswith('.py'):
|
149 |
+
python_file.unlink()
|
150 |
+
```
|
151 |
+
|
152 |
+
### Printing the model:
|
153 |
+
|
154 |
+
```text
|
155 |
+
Step3vForConditionalGeneration(
|
156 |
+
(model): Step3vModel(
|
157 |
+
(vision_model): StepCLIPVisionTransformer(
|
158 |
+
(embeddings): StepCLIPVisionEmbeddings(
|
159 |
+
(patch_embedding): Conv2d(3, 64, kernel_size=(14, 14), stride=(14, 14))
|
160 |
+
(position_embedding): Embedding(2705, 64)
|
161 |
+
)
|
162 |
+
(transformer): StepCLIPEncoder(
|
163 |
+
(layers): ModuleList(
|
164 |
+
(0-1): 2 x StepCLIPEncoderLayer(
|
165 |
+
(layer_norm1): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
166 |
+
(layer_norm2): LayerNorm((64,), eps=1e-06, elementwise_affine=True)
|
167 |
+
(self_attn): StepCLIPAttention(
|
168 |
+
(qkv_proj): Linear(in_features=64, out_features=192, bias=True)
|
169 |
+
(out_proj): Linear(in_features=64, out_features=64, bias=True)
|
170 |
+
)
|
171 |
+
(mlp): StepCLIPMLP(
|
172 |
+
(fc1): Linear(in_features=64, out_features=128, bias=True)
|
173 |
+
(act): QuickGELUActivation()
|
174 |
+
(fc2): Linear(in_features=128, out_features=64, bias=True)
|
175 |
+
)
|
176 |
+
)
|
177 |
+
)
|
178 |
+
)
|
179 |
+
)
|
180 |
+
(language_model): Step3Model(
|
181 |
+
(embed_tokens): Embedding(128815, 32)
|
182 |
+
(layers): ModuleList(
|
183 |
+
(0): Step3vDecoderLayer(
|
184 |
+
(self_attn): Step3vAttention(
|
185 |
+
(q_proj): Linear(in_features=32, out_features=512, bias=False)
|
186 |
+
(k_proj): Linear(in_features=32, out_features=256, bias=False)
|
187 |
+
(v_proj): Linear(in_features=32, out_features=256, bias=False)
|
188 |
+
(o_proj): Linear(in_features=512, out_features=32, bias=False)
|
189 |
+
(inter_norm): Step3vRMSNorm((512,), eps=1e-05)
|
190 |
+
(wq): Linear(in_features=512, out_features=512, bias=False)
|
191 |
+
)
|
192 |
+
(mlp): Step3vMLP(
|
193 |
+
(gate_proj): Linear(in_features=32, out_features=64, bias=False)
|
194 |
+
(up_proj): Linear(in_features=32, out_features=64, bias=False)
|
195 |
+
(down_proj): Linear(in_features=64, out_features=32, bias=False)
|
196 |
+
(act_fn): SiLU()
|
197 |
+
)
|
198 |
+
(input_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
199 |
+
(post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
200 |
+
)
|
201 |
+
(1): Step3vDecoderLayer(
|
202 |
+
(self_attn): Step3vAttention(
|
203 |
+
(q_proj): Linear(in_features=32, out_features=512, bias=False)
|
204 |
+
(k_proj): Linear(in_features=32, out_features=256, bias=False)
|
205 |
+
(v_proj): Linear(in_features=32, out_features=256, bias=False)
|
206 |
+
(o_proj): Linear(in_features=512, out_features=32, bias=False)
|
207 |
+
(inter_norm): Step3vRMSNorm((512,), eps=1e-05)
|
208 |
+
(wq): Linear(in_features=512, out_features=512, bias=False)
|
209 |
+
)
|
210 |
+
(moe): Step3vMoEMLP(
|
211 |
+
(gate): Linear(in_features=32, out_features=8, bias=False)
|
212 |
+
(up_proj): MoELinear()
|
213 |
+
(gate_proj): MoELinear()
|
214 |
+
(down_proj): MoELinear()
|
215 |
+
(act_fn): SiLU()
|
216 |
+
)
|
217 |
+
(share_expert): Step3vMLP(
|
218 |
+
(gate_proj): Linear(in_features=32, out_features=64, bias=False)
|
219 |
+
(up_proj): Linear(in_features=32, out_features=64, bias=False)
|
220 |
+
(down_proj): Linear(in_features=64, out_features=32, bias=False)
|
221 |
+
(act_fn): SiLU()
|
222 |
+
)
|
223 |
+
(input_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
224 |
+
(post_attention_layernorm): Step3vRMSNorm((32,), eps=1e-05)
|
225 |
+
)
|
226 |
+
)
|
227 |
+
(norm): Step3vRMSNorm((32,), eps=1e-05)
|
228 |
+
(rotary_emb): Step3vRotaryEmbedding()
|
229 |
+
)
|
230 |
+
(vit_downsampler): Conv2d(64, 64, kernel_size=(2, 2), stride=(2, 2))
|
231 |
+
(vit_downsampler2): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))
|
232 |
+
(vit_large_projector): Linear(in_features=128, out_features=32, bias=False)
|
233 |
+
)
|
234 |
+
(lm_head): Linear(in_features=32, out_features=128815, bias=False)
|
235 |
+
)
|
236 |
+
```
|
chat_template.jinja
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{% macro render_content(content) %} {% if content is string %}{{- content }}{% elif content is mapping %}{{- content['value'] if 'value' in content else content['text'] }}{% elif content is iterable %}{% for item in content %}{% if item.type == 'text' %}{{- item['value'] if 'value' in item else item['text'] }}{% elif item.type == 'image' %}<im_patch>{% endif %}{% endfor %}{% endif %} {% endmacro %}{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{{ bos_token }}{% for message in messages %}{% if message.role == 'system' %}{{ render_content(message['content']) }}{% endif %}{% endfor %}{% if tools is defined and tools %}{% set ns = namespace(data='') %}{% for tool in tools %}{% set ns.data = ns.data + (tool | tojson(ensure_ascii=False)) + '
|
2 |
+
' %}{% endfor %}{% set tool_schemas_var = ns.data %}# Tools
|
3 |
+
You may call one or more tools to assist with the user query. You are provided with tool schemas within <tools></tools> XML tags: <tools>{{ tool_schemas_var }}</tools> When making tool calls, use XML format to invoke tools and pass parameters: <|tool_calls_begin|>
|
4 |
+
<|tool_call_begin|>
|
5 |
+
function<|tool_sep|><steptml:invoke name="tool_name0"><steptml:parameter name="parameter_name0">[parameter value]</steptml:parameter>...</steptml:invoke><|tool_call_end|>
|
6 |
+
<|tool_call_begin|>
|
7 |
+
function<|tool_sep|><steptml:invoke name="tool_name1"><steptml:parameter name="parameter_name1">[parameter value]</steptml:parameter>...</steptml:invoke><|tool_call_end|>
|
8 |
+
<|tool_calls_end|>
|
9 |
+
Note: * You can invoke one or more tools in parallel. * Each tool call must be complete and self-contained within a single <steptml:toolcall></steptml:toolcall> block. {% endif %}{% for message in messages %}{% if message.role == 'tool_description' %}{{ render_content(message['content']) }}{% elif message.role == 'user' %}{{- '<|BOT|>' + message.role + '\n' + render_content(message['content']) }}{{- '<|EOT|>' }}{% elif message.role == 'tool_response' %}<|tool_outputs_begin|>
|
10 |
+
{% for tool_output in message['content'] %}<|tool_output_begin|>
|
11 |
+
{{ render_content(tool_output) }}<|tool_output_end|>{% endfor %}
|
12 |
+
<|tool_outputs_end|>
|
13 |
+
{% else %}{{- '<|BOT|>' + message.role + '
|
14 |
+
' }}{% if message['content'] is defined %}{{- render_content(message['content']) }}{% endif %}{% if message.tool_calls is defined %}<|tool_calls_begin|>
|
15 |
+
{% for tool in message.tool_calls %}<|tool_call_begin>|>
|
16 |
+
{{ tool['type'] }}<|tool_sep|>{{- '<steptml:invoke name="' + tool['function']['name'] + '">' }}{% for name, param in tool['function']['arguments'].items() %} {{- '<steptml:parameter name="' + name + '">' + param | string + '</steptml:parameter>' }}{% endfor %}</steptml:invoke><|tool_call_end|>
|
17 |
+
{% endfor %}<|tool_calls_end|>
|
18 |
+
{% endif %}<|EOT|>{% endif %}{% endfor %}{% if add_generation_prompt %}{{- '<|BOT|>assistant
|
19 |
+
<think>
|
20 |
+
' }}{% endif %}
|
config.json
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Step3vForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "stepfun-ai/step3--configuration_step3.Step3VLConfig",
|
7 |
+
"AutoModelForCausalLM": "stepfun-ai/step3--modeling_step3.Step3vForConditionalGeneration"
|
8 |
+
},
|
9 |
+
"bos_token_id": 0,
|
10 |
+
"eos_token_id": 128805,
|
11 |
+
"hidden_size": 32,
|
12 |
+
"im_end_token": "<im_end>",
|
13 |
+
"im_patch_token": "<im_patch>",
|
14 |
+
"im_start_token": "<im_start>",
|
15 |
+
"image_token_id": 128001,
|
16 |
+
"image_token_len": 169,
|
17 |
+
"model_type": "step3_vl",
|
18 |
+
"patch_token_len": 81,
|
19 |
+
"projector_bias": false,
|
20 |
+
"text_config": {
|
21 |
+
"architectures": [
|
22 |
+
"Step3TextForCausalLM"
|
23 |
+
],
|
24 |
+
"head_dim": 256,
|
25 |
+
"hidden_size": 32,
|
26 |
+
"intermediate_size": 64,
|
27 |
+
"max_position_embedding": 65536,
|
28 |
+
"max_seq_len": 65536,
|
29 |
+
"model_type": "step3_text",
|
30 |
+
"moe_intermediate_size": 64,
|
31 |
+
"moe_layers_enum": "1",
|
32 |
+
"moe_num_experts": 8,
|
33 |
+
"moe_top_k": 3,
|
34 |
+
"norm_expert_weight": false,
|
35 |
+
"num_attention_groups": 1,
|
36 |
+
"num_attention_heads": 2,
|
37 |
+
"num_hidden_layers": 2,
|
38 |
+
"rms_norm_eps": 1e-05,
|
39 |
+
"rope_scaling": null,
|
40 |
+
"rope_theta": 500000,
|
41 |
+
"share_expert_dim": 64,
|
42 |
+
"share_q_dim": 512,
|
43 |
+
"torch_dtype": "bfloat16",
|
44 |
+
"vocab_size": 128815
|
45 |
+
},
|
46 |
+
"torch_dtype": "bfloat16",
|
47 |
+
"transformers_version": "4.54.1",
|
48 |
+
"understand_projector_stride": 2,
|
49 |
+
"vision_config": {
|
50 |
+
"hidden_act": "quick_gelu",
|
51 |
+
"hidden_size": 64,
|
52 |
+
"image_size": 728,
|
53 |
+
"intermediate_size": 128,
|
54 |
+
"layer_norm_eps": 1e-05,
|
55 |
+
"model_type": "step3_vision_encoder",
|
56 |
+
"num_attention_heads": 2,
|
57 |
+
"num_channels": 3,
|
58 |
+
"num_hidden_layers": 2,
|
59 |
+
"output_hidden_size": 64,
|
60 |
+
"patch_size": 14
|
61 |
+
}
|
62 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token_id": 0,
|
3 |
+
"do_sample": true,
|
4 |
+
"eos_token_id": 128805,
|
5 |
+
"temperature": 0.7,
|
6 |
+
"top_p": 0.95,
|
7 |
+
"transformers_version": "4.54.1",
|
8 |
+
"trust_remote_code": true
|
9 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7bc0f1f5812da20e92c3a73a7d4996a1bc320147f8e462c19ff81ad846d6fca2
|
3 |
+
size 18611328
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoProcessor": "stepfun-ai/step3--processing_step3.Step3VLProcessor"
|
4 |
+
},
|
5 |
+
"processor_class": "Step3VLProcessor"
|
6 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin▁of▁sentence|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|EOT|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": true,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|end▁of▁sentence|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|