End of training
Browse files
README.md
CHANGED
@@ -22,7 +22,7 @@ model-index:
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
32 |
|
33 |
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
-
- Loss: 0.
|
36 |
-
- Accuracy: 0.
|
37 |
|
38 |
## Model description
|
39 |
|
@@ -56,51 +56,50 @@ The following hyperparameters were used during training:
|
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 1
|
59 |
-
- distributed_type: tpu
|
60 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
- lr_scheduler_type: linear
|
62 |
- lr_scheduler_warmup_steps: 20
|
63 |
-
-
|
64 |
|
65 |
### Training results
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
77 |
-
| 0.
|
78 |
-
| 0.
|
79 |
-
| 0.
|
80 |
-
| 0.
|
81 |
-
| 0.
|
82 |
-
| 0.
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
-
| 0.
|
87 |
-
| 0.
|
88 |
-
| 0.
|
89 |
-
| 0.
|
90 |
-
| 0.
|
91 |
-
| 0.
|
92 |
-
| 0.
|
93 |
-
| 0.
|
94 |
-
|
|
95 |
-
| 0.
|
96 |
-
| 0.
|
97 |
-
| 0.
|
98 |
-
| 0.
|
99 |
|
100 |
|
101 |
### Framework versions
|
102 |
|
103 |
- Transformers 4.33.2
|
104 |
-
- Pytorch 2.0.
|
105 |
- Datasets 2.14.5
|
106 |
- Tokenizers 0.11.6
|
|
|
22 |
metrics:
|
23 |
- name: Accuracy
|
24 |
type: accuracy
|
25 |
+
value: 0.9453125
|
26 |
---
|
27 |
|
28 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
32 |
|
33 |
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
|
34 |
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.1944
|
36 |
+
- Accuracy: 0.9453
|
37 |
|
38 |
## Model description
|
39 |
|
|
|
56 |
- train_batch_size: 16
|
57 |
- eval_batch_size: 32
|
58 |
- seed: 1
|
|
|
59 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
- lr_scheduler_type: linear
|
61 |
- lr_scheduler_warmup_steps: 20
|
62 |
+
- num_epochs: 6
|
63 |
|
64 |
### Training results
|
65 |
|
66 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.6815 | 0.01 | 25 | 0.6999 | 0.5092 |
|
69 |
+
| 0.6592 | 0.01 | 50 | 0.6221 | 0.6445 |
|
70 |
+
| 0.5832 | 0.02 | 75 | 0.4570 | 0.7993 |
|
71 |
+
| 0.2882 | 0.02 | 100 | 0.2076 | 0.9358 |
|
72 |
+
| 0.1894 | 0.03 | 125 | 0.3499 | 0.9404 |
|
73 |
+
| 0.1864 | 0.04 | 150 | 0.2963 | 0.9461 |
|
74 |
+
| 0.2553 | 0.04 | 175 | 0.6929 | 0.9289 |
|
75 |
+
| 0.245 | 0.05 | 200 | 0.4761 | 0.9323 |
|
76 |
+
| 0.2042 | 0.05 | 225 | 0.5294 | 0.9461 |
|
77 |
+
| 0.2002 | 0.06 | 250 | 0.8441 | 0.9472 |
|
78 |
+
| 0.1633 | 0.07 | 275 | 0.8560 | 0.9495 |
|
79 |
+
| 0.1939 | 0.07 | 300 | 0.3197 | 0.9450 |
|
80 |
+
| 0.1928 | 0.08 | 325 | 0.4214 | 0.9472 |
|
81 |
+
| 0.2201 | 0.08 | 350 | 0.5266 | 0.9484 |
|
82 |
+
| 0.143 | 0.09 | 375 | 0.8642 | 0.9450 |
|
83 |
+
| 0.2354 | 0.1 | 400 | 1.2116 | 0.9335 |
|
84 |
+
| 0.1692 | 0.1 | 425 | 0.1807 | 0.9472 |
|
85 |
+
| 0.1531 | 0.11 | 450 | 0.6431 | 0.9484 |
|
86 |
+
| 0.152 | 0.11 | 475 | 1.4046 | 0.9553 |
|
87 |
+
| 0.1948 | 0.12 | 500 | 0.1596 | 0.9553 |
|
88 |
+
| 0.2007 | 0.13 | 525 | 0.1779 | 0.9438 |
|
89 |
+
| 0.1338 | 0.13 | 550 | 0.6476 | 0.9495 |
|
90 |
+
| 0.3812 | 0.14 | 575 | 0.3901 | 0.9484 |
|
91 |
+
| 0.7052 | 0.14 | 600 | 0.1740 | 0.9507 |
|
92 |
+
| 0.8601 | 0.15 | 625 | 1.5226 | 0.9484 |
|
93 |
+
| 1.384 | 0.16 | 650 | 0.6605 | 0.9427 |
|
94 |
+
| 0.6833 | 0.16 | 675 | 0.7313 | 0.9484 |
|
95 |
+
| 0.1833 | 0.17 | 700 | 0.4110 | 0.9438 |
|
96 |
+
| 0.1968 | 0.17 | 725 | 0.2914 | 0.9450 |
|
97 |
+
| 0.2001 | 0.18 | 750 | 0.1947 | 0.9335 |
|
98 |
|
99 |
|
100 |
### Framework versions
|
101 |
|
102 |
- Transformers 4.33.2
|
103 |
+
- Pytorch 2.0.1+cu117
|
104 |
- Datasets 2.14.5
|
105 |
- Tokenizers 0.11.6
|