End of training
Browse files
README.md
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: t5-large
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- glue
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: t5-large_cola_sp0_ar0
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Text Classification
|
15 |
+
type: text-classification
|
16 |
+
dataset:
|
17 |
+
name: glue
|
18 |
+
type: glue
|
19 |
+
config: cola
|
20 |
+
split: validation
|
21 |
+
args: cola
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.880859375
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# t5-large_cola_sp0_ar0
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.3777
|
36 |
+
- Accuracy: 0.8809
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 5e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 32
|
58 |
+
- seed: 1
|
59 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: linear
|
61 |
+
- lr_scheduler_warmup_steps: 20
|
62 |
+
- num_epochs: 2
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| 0.5951 | 0.05 | 25 | 0.7088 | 0.6913 |
|
69 |
+
| 0.5805 | 0.11 | 50 | 0.5398 | 0.6913 |
|
70 |
+
| 0.5083 | 0.16 | 75 | 0.4858 | 0.8025 |
|
71 |
+
| 0.4229 | 0.21 | 100 | 0.5415 | 0.7881 |
|
72 |
+
| 0.4178 | 0.27 | 125 | 0.4968 | 0.7939 |
|
73 |
+
| 0.4273 | 0.32 | 150 | 0.4996 | 0.8054 |
|
74 |
+
| 0.4297 | 0.37 | 175 | 0.4798 | 0.8044 |
|
75 |
+
| 0.4032 | 0.42 | 200 | 0.4975 | 0.8140 |
|
76 |
+
| 0.4246 | 0.48 | 225 | 0.4489 | 0.8226 |
|
77 |
+
| 0.4065 | 0.53 | 250 | 0.4677 | 0.8245 |
|
78 |
+
| 0.4173 | 0.58 | 275 | 0.4121 | 0.8265 |
|
79 |
+
| 0.3738 | 0.64 | 300 | 0.4524 | 0.8313 |
|
80 |
+
| 0.3582 | 0.69 | 325 | 0.4726 | 0.8332 |
|
81 |
+
| 0.3913 | 0.74 | 350 | 0.4031 | 0.8303 |
|
82 |
+
| 0.3568 | 0.8 | 375 | 0.4740 | 0.8360 |
|
83 |
+
| 0.337 | 0.85 | 400 | 0.4273 | 0.8322 |
|
84 |
+
| 0.3437 | 0.9 | 425 | 0.4838 | 0.8370 |
|
85 |
+
| 0.3879 | 0.96 | 450 | 0.4346 | 0.8360 |
|
86 |
+
| 0.3248 | 1.01 | 475 | 0.4600 | 0.8370 |
|
87 |
+
| 0.2341 | 1.06 | 500 | 0.5489 | 0.8370 |
|
88 |
+
| 0.3 | 1.11 | 525 | 0.4724 | 0.8408 |
|
89 |
+
| 0.1939 | 1.17 | 550 | 0.5440 | 0.8437 |
|
90 |
+
| 0.2323 | 1.22 | 575 | 0.8830 | 0.8332 |
|
91 |
+
| 0.2769 | 1.27 | 600 | 0.7055 | 0.8265 |
|
92 |
+
| 0.1975 | 1.33 | 625 | 0.5484 | 0.8380 |
|
93 |
+
| 0.2647 | 1.38 | 650 | 0.5763 | 0.8341 |
|
94 |
+
| 0.225 | 1.43 | 675 | 0.5599 | 0.8351 |
|
95 |
+
| 0.2835 | 1.49 | 700 | 0.6487 | 0.8313 |
|
96 |
+
| 0.2591 | 1.54 | 725 | 0.5308 | 0.8332 |
|
97 |
+
| 0.2751 | 1.59 | 750 | 0.4780 | 0.8332 |
|
98 |
+
| 0.2602 | 1.65 | 775 | 0.4718 | 0.8389 |
|
99 |
+
| 0.2315 | 1.7 | 800 | 0.5345 | 0.8313 |
|
100 |
+
| 0.1938 | 1.75 | 825 | 0.5500 | 0.8332 |
|
101 |
+
| 0.2507 | 1.8 | 850 | 0.5696 | 0.8322 |
|
102 |
+
| 0.2734 | 1.86 | 875 | 0.5624 | 0.8303 |
|
103 |
+
| 0.2917 | 1.91 | 900 | 0.5438 | 0.8303 |
|
104 |
+
| 0.2492 | 1.96 | 925 | 0.5352 | 0.8313 |
|
105 |
+
|
106 |
+
|
107 |
+
### Framework versions
|
108 |
+
|
109 |
+
- Transformers 4.33.2
|
110 |
+
- Pytorch 2.0.1+cu117
|
111 |
+
- Datasets 2.14.5
|
112 |
+
- Tokenizers 0.11.6
|