File size: 2,856 Bytes
058ef17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
base_model: t5-large
tags:
- generated_from_trainer
datasets:
- glue
metrics:
- accuracy
model-index:
- name: t5-large_cola_dense_epochs-7_decoder_all_sparsity10
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: glue
      type: glue
      config: cola
      split: validation
      args: cola
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.837967401725791
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# t5-large_cola_dense_epochs-7_decoder_all_sparsity10

This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset.
It achieves the following results on the evaluation set:
- Loss: 4.6969
- Accuracy: 0.8380

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 128
- seed: 1
- distributed_type: multi-GPU
- gradient_accumulation_steps: 2
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 7

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.5441        | 0.37  | 25   | 0.5813          | 0.6913   |
| 0.3969        | 0.75  | 50   | 0.5219          | 0.8044   |
| 0.3537        | 1.12  | 75   | 0.4713          | 0.8313   |
| 0.2905        | 1.49  | 100  | 0.6308          | 0.8150   |
| 0.3157        | 1.87  | 125  | 0.4301          | 0.8341   |
| 0.2208        | 2.24  | 150  | 2.3147          | 0.8332   |
| 0.2231        | 2.61  | 175  | 0.4612          | 0.8341   |
| 0.2404        | 2.99  | 200  | 1.5471          | 0.8265   |
| 0.1697        | 3.36  | 225  | 0.8701          | 0.8313   |
| 0.131         | 3.73  | 250  | 1.2642          | 0.8380   |
| 0.1219        | 4.1   | 275  | 0.9926          | 0.8370   |
| 0.2647        | 4.48  | 300  | 5.1919          | 0.8341   |
| 0.1329        | 4.85  | 325  | 2.2726          | 0.8418   |
| 0.0857        | 5.22  | 350  | 4.2193          | 0.8370   |
| 0.0989        | 5.6   | 375  | 5.3604          | 0.8389   |
| 0.2557        | 5.97  | 400  | 3.0246          | 0.8341   |
| 0.2617        | 6.34  | 425  | 5.6630          | 0.8456   |
| 0.2526        | 6.72  | 450  | 6.0474          | 0.8360   |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1+cu117
- Datasets 2.9.0
- Tokenizers 0.14.1