--- license: apache-2.0 base_model: t5-large tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: t5-large_cola_dense_epochs-5 results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: cola split: train args: cola metrics: - name: Accuracy type: accuracy value: 0.8813559322033898 --- # t5-large_cola_dense_epochs-5 This model is a fine-tuned version of [t5-large](https://huggingface.co/t5-large) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.4167 - Accuracy: 0.8814 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 0 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6749 | 0.19 | 10 | 0.6270 | 0.7095 | | 0.5772 | 0.37 | 20 | 0.5947 | 0.7101 | | 0.6066 | 0.56 | 30 | 0.5545 | 0.7101 | | 0.5355 | 0.75 | 40 | 0.4788 | 0.7475 | | 0.4398 | 0.93 | 50 | 0.3992 | 0.8469 | | 0.3932 | 1.12 | 60 | 0.3737 | 0.8638 | | 0.3756 | 1.31 | 70 | 0.3606 | 0.8650 | | 0.4004 | 1.5 | 80 | 0.3645 | 0.8603 | | 0.3198 | 1.68 | 90 | 0.3201 | 0.8749 | | 0.3129 | 1.87 | 100 | 0.3638 | 0.8697 | | 0.2763 | 2.06 | 110 | 0.3091 | 0.8819 | | 0.3207 | 2.24 | 120 | 0.3781 | 0.8673 | | 0.2614 | 2.43 | 130 | 0.3351 | 0.8773 | | 0.2909 | 2.62 | 140 | 0.3404 | 0.8662 | | 0.2899 | 2.8 | 150 | 0.3277 | 0.8796 | | 0.2687 | 2.99 | 160 | 0.3520 | 0.8679 | | 0.1993 | 3.18 | 170 | 0.3319 | 0.8854 | | 0.2584 | 3.36 | 180 | 0.3901 | 0.8732 | | 0.2502 | 3.55 | 190 | 0.3766 | 0.8773 | | 0.2234 | 3.74 | 200 | 0.3360 | 0.8895 | | 0.2101 | 3.93 | 210 | 0.3334 | 0.8849 | | 0.1708 | 4.11 | 220 | 0.3819 | 0.8714 | | 0.1664 | 4.3 | 230 | 0.3690 | 0.8773 | | 0.2217 | 4.49 | 240 | 0.4181 | 0.8814 | | 0.2034 | 4.67 | 250 | 0.3607 | 0.8796 | | 0.1948 | 4.86 | 260 | 0.4167 | 0.8814 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1