File size: 2,270 Bytes
c6aa952 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration
from PIL import Image
import base64
import io
class EndpointHandler():
def __init__(self, model_path=""):
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.processor = AutoProcessor.from_pretrained(model_path)
self.model = LlavaForConditionalGeneration.from_pretrained(
model_path,
torch_dtype=torch.bfloat16,
device_map="auto" if torch.cuda.is_available() else None
)
self.model.eval()
def __call__(self, data):
# Expecting data with a "prompt" (text) and an "image" (base64 string)
prompt = data.get("prompt", "Generate a caption for this image.")
image_b64 = data.get("image")
if image_b64 is None:
return {"error": "No image provided in the payload."}
try:
image_bytes = base64.b64decode(image_b64)
image = Image.open(io.BytesIO(image_bytes)).convert("RGB")
except Exception as e:
return {"error": f"Failed to decode image: {str(e)}"}
# Build the conversation template for captioning
conversation = [
{"role": "system", "content": "You are a helpful image captioner."},
{"role": "user", "content": prompt}
]
convo_string = self.processor.apply_chat_template(
conversation,
tokenize=False,
add_generation_prompt=True
)
if not isinstance(convo_string, str):
return {"error": "Failed to create conversation string."}
# Prepare the inputs for the model
inputs = self.processor(
text=[convo_string],
images=[image],
return_tensors="pt"
)
inputs = {k: v.to(self.device) for k, v in inputs.items()}
if "pixel_values" in inputs:
inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)
# Generate caption tokens
generate_ids = self.model.generate(
**inputs,
max_new_tokens=300,
do_sample=True,
temperature=0.6,
top_p=0.9
)[0]
# Optionally, trim off the prompt tokens
generate_ids = generate_ids[inputs["input_ids"].shape[1]:]
caption = self.processor.tokenizer.decode(
generate_ids,
skip_special_tokens=True,
clean_up_tokenization_spaces=False
).strip()
return {"caption": caption}
|