thearod5 commited on
Commit
7348352
·
verified ·
1 Parent(s): 2347900

Update model card.

Browse files
Files changed (1) hide show
  1. README.md +34 -159
README.md CHANGED
@@ -5,62 +5,45 @@ model_name: tbert-siamese-encoder
5
  ---
6
 
7
  # Model Card for Model ID
8
-
9
- <!-- Provide a quick summary of what the model is/does. -->
10
-
11
 
12
 
13
  ## Model Details
14
 
 
15
  ### Model Description
16
-
17
- <!-- Provide a longer summary of what this model is. -->
18
 
19
 
20
 
21
- - **Developed by:** [More Information Needed]
22
- - **Funded by [optional]:** [More Information Needed]
23
- - **Shared by [optional]:** [More Information Needed]
24
- - **Model type:** [More Information Needed]
25
  - **Language(s) (NLP):** en
26
  - **License:** mit
27
- - **Finetuned from model [optional]:** [More Information Needed]
28
 
29
  ### Model Sources [optional]
30
 
31
  <!-- Provide the basic links for the model. -->
32
 
33
- - **Repository:** [More Information Needed]
34
- - **Paper [optional]:** [More Information Needed]
35
- - **Demo [optional]:** [More Information Needed]
36
 
37
  ## Uses
38
-
39
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
40
 
41
  ### Direct Use
42
-
43
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
44
-
45
- [More Information Needed]
46
 
47
  ### Downstream Use [optional]
48
-
49
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
50
-
51
- [More Information Needed]
52
 
53
  ### Out-of-Scope Use
54
-
55
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
56
-
57
- [More Information Needed]
58
 
59
  ## Bias, Risks, and Limitations
60
-
61
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
62
-
63
- [More Information Needed]
64
 
65
  ### Recommendations
66
 
@@ -70,131 +53,23 @@ Users (both direct and downstream) should be made aware of the risks, biases and
70
 
71
  ## How to Get Started with the Model
72
 
73
- Use the code below to get started with the model.
74
-
75
- [More Information Needed]
76
-
77
- ## Training Details
78
-
79
- ### Training Data
80
-
81
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
82
-
83
- [More Information Needed]
84
-
85
- ### Training Procedure
86
-
87
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
88
-
89
- #### Preprocessing [optional]
90
-
91
- [More Information Needed]
92
-
93
-
94
- #### Training Hyperparameters
95
-
96
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
97
-
98
- #### Speeds, Sizes, Times [optional]
99
-
100
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
101
-
102
- [More Information Needed]
103
-
104
- ## Evaluation
105
-
106
- <!-- This section describes the evaluation protocols and provides the results. -->
107
-
108
- ### Testing Data, Factors & Metrics
109
-
110
- #### Testing Data
111
-
112
- <!-- This should link to a Dataset Card if possible. -->
113
-
114
- [More Information Needed]
115
-
116
- #### Factors
117
-
118
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
119
-
120
- [More Information Needed]
121
-
122
- #### Metrics
123
-
124
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
125
-
126
- [More Information Needed]
127
-
128
- ### Results
129
-
130
- [More Information Needed]
131
-
132
- #### Summary
133
-
134
-
135
-
136
- ## Model Examination [optional]
137
-
138
- <!-- Relevant interpretability work for the model goes here -->
139
-
140
- [More Information Needed]
141
-
142
- ## Environmental Impact
143
-
144
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
145
-
146
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
147
-
148
- - **Hardware Type:** [More Information Needed]
149
- - **Hours used:** [More Information Needed]
150
- - **Cloud Provider:** [More Information Needed]
151
- - **Compute Region:** [More Information Needed]
152
- - **Carbon Emitted:** [More Information Needed]
153
-
154
- ## Technical Specifications [optional]
155
-
156
- ### Model Architecture and Objective
157
-
158
- [More Information Needed]
159
-
160
- ### Compute Infrastructure
161
-
162
- [More Information Needed]
163
-
164
- #### Hardware
165
-
166
- [More Information Needed]
167
-
168
- #### Software
169
-
170
- [More Information Needed]
171
-
172
- ## Citation [optional]
173
-
174
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
175
-
176
- **BibTeX:**
177
-
178
- [More Information Needed]
179
-
180
- **APA:**
181
-
182
- [More Information Needed]
183
-
184
- ## Glossary [optional]
185
-
186
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
187
-
188
- [More Information Needed]
189
-
190
- ## More Information [optional]
191
-
192
- [More Information Needed]
193
-
194
- ## Model Card Authors [optional]
195
-
196
- [More Information Needed]
197
-
198
- ## Model Card Contact
199
-
200
- [More Information Needed]
 
5
  ---
6
 
7
  # Model Card for Model ID
8
+ This repository contains the embedding model used to embed artifact for traceability link prediction.
 
 
9
 
10
 
11
  ## Model Details
12
 
13
+ used in the siamese models
14
  ### Model Description
15
+ This embedding model is the encoder portion of the siamese model used in the paper cited. This model utilized a relational classifier
16
+ to create similarity scores between text pairs resembling a cross-encoder and consistently ranked almost as high as the top performer.
17
 
18
 
19
 
20
+ - **Developed by:** Jinfeng Lin (translated by Alberto Rodriguez)
21
+ - **Model type:** Roberta encoder trained on automatic traceability link prediction.
 
 
22
  - **Language(s) (NLP):** en
23
  - **License:** mit
24
+ - **Finetuned from model [optional]:** See Cited Ppaer.
25
 
26
  ### Model Sources [optional]
27
 
28
  <!-- Provide the basic links for the model. -->
29
 
30
+ - **Repository:** https://github.com/jinfenglin/TraceBERT
31
+ - **Paper:** https://arxiv.org/abs/2102.04411
 
32
 
33
  ## Uses
34
+ Used to embed software artifacts intended to be compared via cosine similarity.
 
35
 
36
  ### Direct Use
37
+ Software traceability link prediction, Retrieval Augmented Generation, Artifact Clustering.
 
 
 
38
 
39
  ### Downstream Use [optional]
40
+ The intended vision for this model within a traceability link prediction pipeline, used to retrieve software artifacts for an LLM prompt, and for clustering.
 
 
 
41
 
42
  ### Out-of-Scope Use
43
+ This model could be used for a good set of starting weights for requirements classification.
 
 
 
44
 
45
  ## Bias, Risks, and Limitations
46
+ This data uses open source git data which can be inaccurate and lead to unexpected results.
 
 
 
47
 
48
  ### Recommendations
49
 
 
53
 
54
  ## How to Get Started with the Model
55
 
56
+ ```
57
+ parent_artifacts = [
58
+ "Display Artifacts",
59
+ ]
60
+ texts = [
61
+ "Display Artifacts", // parent artifact
62
+ "A table view should be provided to display all project artifacts.", // child 1
63
+ "The system should be able to generate documentation for a set of artifacts." // child 2
64
+ ]
65
+ embeddings = model.encode(texts, convert_to_tensor=False)
66
+
67
+ parent_embedding = embeddings[0:1]
68
+ children_embeddings = embeddings[1:]
69
+
70
+ # Compute cosine similarity
71
+ sim_matrix = cosine_similarity(parent_embedding, children_embeddings)
72
+
73
+ ```
74
+ ## Training, Evaluation, and Results Details
75
+ Please see cited paper for more information on training method, evaluation, and resuts.