--- library_name: peft license: llama2 base_model: lmsys/vicuna-7b-v1.5 tags: - axolotl - generated_from_trainer model-index: - name: 521bcd67-9ca7-4f94-b0c3-b0b4f64e2a8e results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: lmsys/vicuna-7b-v1.5 bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a43abc255f87f2c1_train_data.json ds_type: json format: custom path: /workspace/input_data/a43abc255f87f2c1_train_data.json type: field_instruction: input field_output: answer_chatdoctor format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 1 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: true gradient_clipping: 1.0 group_by_length: false hub_model_id: thangla01/521bcd67-9ca7-4f94-b0c3-b0b4f64e2a8e hub_repo: null hub_strategy: end hub_token: null learning_rate: 2.0e-05 load_in_4bit: true load_in_8bit: true local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_steps: 500 micro_batch_size: 2 mlflow_experiment_name: /tmp/a43abc255f87f2c1_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 1 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 99691956-ca20-4a24-a33a-b241b081e5a0 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 99691956-ca20-4a24-a33a-b241b081e5a0 warmup_steps: 20 weight_decay: 0.01 xformers_attention: true ```

# 521bcd67-9ca7-4f94-b0c3-b0b4f64e2a8e This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2375 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 423 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.2299 | 0.9982 | 422 | 1.2376 | | 1.8415 | 1.0012 | 423 | 1.2375 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1