# Copyright (c) Kyutai, all rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import typing as tp from einops import rearrange import torch from torch import nn from torch import distributed import torch.nn.functional as F class _CodebookForwardResult(tp.NamedTuple): quantized: torch.Tensor codes: torch.Tensor metrics: tp.Dict[str, torch.Tensor] class _VQForwardResult(tp.NamedTuple): quantized: torch.Tensor codes: torch.Tensor loss: torch.Tensor metrics: tp.Dict[str, torch.Tensor] def _ema_inplace(moving_avg: torch.Tensor, new: torch.Tensor, decay: float) -> None: moving_avg.data.mul_(decay).add_(new, alpha=(1 - decay)) def _uniform_init(*shape: int) -> torch.Tensor: t = torch.empty(shape) nn.init.kaiming_uniform_(t) return t def _sample_vectors(samples: torch.Tensor, num: int) -> torch.Tensor: num_samples, device = samples.shape[0], samples.device if num_samples >= num: indices = torch.randperm(num_samples, device=device)[:num] else: indices = torch.randint(0, num_samples, (num,), device=device) return samples[indices] def _compute_entropy(usage: torch.Tensor) -> torch.Tensor: # Usage is some unnormalized distribution. proba = usage / usage.sum() p_log_p = torch.where( proba == 0, zero_scalar(usage.device), proba * torch.log(proba) ) return -p_log_p.sum() def _is_distributed() -> bool: # Checks if we need to use distributed routines. return distributed.is_initialized() and distributed.get_world_size() > 1 def zero_scalar(device) -> torch.Tensor: """Returns a 0. value on the given device without introducing a synchronization point.""" return torch.zeros([1], device=device)[0] class EuclideanCodebook(nn.Module): """Codebook with Euclidean distance. Args: dim (int): Dimension. codebook_size (int): Codebook size. decay (float): Decay for exponential moving average over the codebooks. epsilon (float): Epsilon value for numerical stability. threshold_usage_ratio (float): Defines the threshold for the cluster usage under which a centroid is replaced. This is expressed as a fraction of the usage a centroid would get under a uniform distribution, so that it doesn't depend on the batch size etc. replaced_usage_ratio (float): When replacing a centroid, use this as an initial centroid usage, to avoid the centroid getting replaced too quickly. check_unused_every (int): Check for unused centroids every `check_unused_every` iterations. This is to avoid too many synchronization points. Buffers: cluster_usage (torch.Tensor): EMA of the cluster usage per batch, e.g. this will be dependent on the batch size etc. embedding_sum (torch.Tensor): EMA of the sum of the assigned points to each cluster. In particular, this can be normalized by `cluster_usage` to obtain the actual cluster centroids. """ def __init__( self, dim: int, codebook_size: int, decay: float = 0.99, epsilon: float = 1e-5, threshold_usage_ratio: float = 0.1, replaced_usage_ratio: float = 1.0, check_unused_every: int = 5, ): super().__init__() self.decay = decay embedding = torch.zeros(codebook_size, dim) self.dim = dim self.codebook_size = codebook_size self.epsilon = epsilon self.threshold_usage_ratio = threshold_usage_ratio self.replaced_usage_ratio = replaced_usage_ratio self.check_unused_every = check_unused_every self._next_unused_check = check_unused_every self.register_buffer("_initialized", torch.tensor([False], dtype=torch.float)) self.register_buffer("cluster_usage", torch.ones(codebook_size)) self.register_buffer("embedding_sum", embedding) self.register_buffer("_embedding", None, persistent=False) self._cached_initialized = False def _load_from_state_dict(self, state_dict, prefix, *args, **kwargs) -> None: # Mapping old names to new names mappings = { "inited": "_initialized", "cluster_size": "cluster_usage", "embed_avg": "embedding_sum", "embed_sum": "embedding_sum", } for old_name, new_name in mappings.items(): old_name = prefix + old_name if old_name in state_dict: value = state_dict.pop(old_name) if new_name is not None: state_dict[prefix + new_name] = value super()._load_from_state_dict(state_dict, prefix, *args, **kwargs) @property def embedding(self) -> torch.Tensor: if self._embedding is None: embedding = ( self.embedding_sum / self.cluster_usage.clamp(min=self.epsilon)[:, None] ) self.register_buffer("_embedding", embedding, persistent=False) return embedding return self._embedding def _broadcast_buffers(self) -> None: if _is_distributed(): for buffer in self.buffers(): distributed.broadcast(buffer, 0) def _replace_expired_codes(self, samples: torch.Tensor, mask: torch.Tensor) -> None: # Replaces expired centroids, as indicated by `mask` (a true value indicate the code needs to be replaced). # The new codes are sampled from the batch `samples`. new_vectors = _sample_vectors(samples, self.codebook_size) replace_cluster_usage = ( self.replaced_usage_ratio * self.cluster_usage.sum() / self.codebook_size ) self.embedding_sum[:] = torch.where( mask[:, None], replace_cluster_usage * new_vectors, self.embedding_sum ) self.cluster_usage[:] = torch.where( mask, replace_cluster_usage, self.cluster_usage ) def _reshape_input(self, x: torch.Tensor) -> torch.Tensor: # Flattens all the dimensions but the last one, e.g. return a vector of shape `[N, D]`. x = rearrange(x, "... d -> (...) d") return x def _reshape_codes(self, codes: torch.Tensor, shape: torch.Size) -> torch.Tensor: return codes.view(*shape[:-1]) def _quantize(self, x: torch.Tensor) -> torch.Tensor: # Projects each vector in `x` over the nearest centroid and return its index. # `x` should be `[N, D]` with `N` the number of input vectors and `D` the dimension. assert x.dim() == 2 dists = torch.cdist(x[None], self.embedding[None], p=2)[0] codes = dists.argmin(dim=-1) return codes def encode(self, x: torch.Tensor) -> torch.Tensor: """Given a tensor `x` of shape `[*, D]`, returns a tensor of integer codes of shape `[*]`. The codes are defined as the indexes of the centroids nearest to each vector in `x`. """ assert x.dtype.is_floating_point, f"Input should be floats, got {x.dtype}" shape = x.shape x = self._reshape_input(x) codes = self._quantize(x) codes = self._reshape_codes(codes, shape) return codes def decode(self, codes: torch.Tensor) -> torch.Tensor: """Given a tensor of codes of shape `[*]`, returns a tensor of shape `[*, D]`, corresponding to the centroids associated to each code index. """ assert ( not codes.dtype.is_floating_point ), f"Codes should be integers, got {codes.dtype}" quantized = F.embedding(codes, self.embedding) return quantized def forward( self, x: torch.Tensor, initialize: bool = True ) -> _CodebookForwardResult: shape = x.shape x = self._reshape_input(x) flat_codes = self._quantize(x) codes = self._reshape_codes(flat_codes, shape) quantized = self.decode(codes) metrics: tp.Dict[str, torch.Tensor] = {} return _CodebookForwardResult(quantized, codes, metrics) class VectorQuantization(nn.Module): """Vector quantization implementation. Currently supports only euclidean distance. Args: dim (int): Dimension codebook_size (int): Codebook size codebook_dim (int): Codebook dimension. If not defined, uses the specified dimension in dim. decay (float): Decay for exponential moving average over the codebooks. epsilon (float): Epsilon value for numerical stability. threshold_usage_ratio (float): Defines the threshold for the cluster usage under which a centroid is replaced. This is expressed as a fraction of the usage a centroid would get under a uniform distribution, so that it doesn't depend on the batch size etc. replaced_usage_ratio (float): When replacing a centroid, use this as an initial centroid usage, to avoid the centroid getting replaced too quickly. check_unused_every (int): Check for unused centroids every `check_unused_every` iterations. This is to avoid too many synchronization points. """ def __init__( self, dim: int, codebook_size: int, codebook_dim: tp.Optional[int] = None, decay: float = 0.99, epsilon: float = 1e-5, threshold_usage_ratio: float = 0.1, **kwargs, ): super().__init__() if codebook_dim is None: codebook_dim = dim requires_projection = codebook_dim != dim self.project_in = ( nn.Linear(dim, codebook_dim) if requires_projection else nn.Identity() ) self.project_out = ( nn.Linear(codebook_dim, dim) if requires_projection else nn.Identity() ) self.epsilon = epsilon self._codebook = EuclideanCodebook( dim=codebook_dim, codebook_size=codebook_size, decay=decay, epsilon=epsilon, threshold_usage_ratio=threshold_usage_ratio, **kwargs, ) self.codebook_size = codebook_size @property def embedding(self): return self._codebook.embedding def _rearrange_input(self, x): x = rearrange(x, "b d n -> b n d") return x def _rearrange_output(self, quantized): quantized = rearrange(quantized, "b n d -> b d n") return quantized def encode(self, x: torch.Tensor) -> torch.Tensor: """Encodes `x` into discrete integer codes.""" x = self._rearrange_input(x) x = self.project_in(x) codes = self._codebook.encode(x) return codes def decode(self, codes: torch.Tensor) -> torch.Tensor: """Converts integer codes into quantized vectors.""" quantized = self._codebook.decode(codes) quantized = self.project_out(quantized) quantized = self._rearrange_output(quantized) return quantized def forward(self, x: torch.Tensor, initialize: bool = True) -> _VQForwardResult: x = self._rearrange_input(x) quantized, codes, metrics = self._codebook(x, initialize=initialize) loss = zero_scalar(x.device) quantized = self.project_out(quantized) quantized = self._rearrange_output(quantized) return _VQForwardResult(quantized, codes, loss, metrics) class ResidualVectorQuantization(nn.Module): """Residual vector quantization implementation. Follows Algorithm 1. in https://arxiv.org/pdf/2107.03312.pdf """ def __init__(self, *, num_quantizers: int, codebook_offset: int, **kwargs): super().__init__() self.layers = nn.ModuleList( [VectorQuantization(**kwargs) for _ in range(num_quantizers)] ) self.codebook_offset = codebook_offset def forward( self, x: torch.Tensor, n_q: tp.Optional[int] = None ) -> _VQForwardResult: """ Args: x (torch.Tensor): input tensor to quantize, of shape `[B, C, T]`. n_q (int or None): if provided, number of codebook levels to use in RVQ. """ quantized_out = zero_scalar(x.device) residual = x all_losses = [] all_codes = [] all_metrics: tp.Dict[str, torch.Tensor] = {} n_q = n_q or len(self.layers) previous_layer_is_initialized = True for i, layer in enumerate(self.layers[:n_q]): # type: ignore quantized, codes, loss, metrics = layer( residual, initialize=previous_layer_is_initialized ) quantized = quantized.detach() residual = residual - quantized quantized_out = quantized_out + quantized all_codes.append(codes) all_losses.append(loss) for key, value in metrics.items(): if key in all_metrics: all_metrics[key] += value / n_q else: all_metrics[key] = value / n_q all_metrics[key + f"_{i + self.codebook_offset}"] = value out_losses, out_codes = map(torch.stack, (all_losses, all_codes)) return _VQForwardResult(quantized_out, out_codes, out_losses, all_metrics) def encode(self, x: torch.Tensor, n_q: tp.Optional[int] = None) -> torch.Tensor: """Encodes `x` into discrete integer codes. If `n_q` is provided, only uses the first `n_q` codebook levels.""" residual = x all_indices = [] n_q = n_q or len(self.layers) for layer in self.layers[:n_q]: # type: ignore indices = layer.encode(residual) quantized = layer.decode(indices) residual = residual - quantized all_indices.append(indices) out_indices = torch.stack(all_indices) return out_indices def decode(self, codes: torch.Tensor) -> torch.Tensor: """Converts the integer codes into quantized vectors.""" quantized = zero_scalar(codes.device) for idx, layer_codes in enumerate(codes): layer = self.layers[idx] quantized = quantized + layer.decode(layer_codes) return quantized