# Copyright (c) Kyutai, all rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. import typing as tp from einops import rearrange import torch from torch import nn from .conv import StreamingConv1d, StreamingConvTranspose1d class ConvDownsample1d(nn.Module): """ Downsampling by some integer amount `stride` using convolutions with a kernel size of twice the stride. If `causal` is True, the output uses a causal convolution. """ def __init__( self, stride: int, dimension: tp.Optional[int] = None, causal: bool = False, learnt: bool = False, channel_wise: bool = False, ): super().__init__() self.learnt = learnt self.channel_wise = channel_wise groups = 1 if learnt: assert dimension is not None, "Dimension required for learnt convolutions." in_channels = dimension out_channels = dimension if channel_wise: groups = dimension else: in_channels = 1 out_channels = 1 self.conv = StreamingConv1d( in_channels, out_channels, kernel_size=2 * stride, stride=stride, causal=causal, groups=groups, bias=False, pad_mode="replicate", ) if not learnt: actual_conv = self.conv.conv.conv actual_conv.weight.requires_grad_(False) actual_conv.weight.data.fill_(1.0 / (2 * stride)) def forward(self, x: torch.Tensor): batch_size = len(x) if not self.learnt: x = rearrange(x, "b c t -> (b c) () t") y = self.conv(x) if not self.learnt: y = rearrange(y, "(b c) () t -> b c t", b=batch_size) return y class ConvTrUpsample1d(nn.Module): """ Upsample by some integer amount `stride` using transposed convolutions. """ def __init__( self, stride: int, dimension: tp.Optional[int] = None, causal: bool = False, learnt: bool = False, channel_wise: bool = False, ): super().__init__() self.learnt = learnt self.channel_wise = channel_wise groups = 1 if learnt: assert dimension is not None, "Dimension required for learnt convolutions." in_channels = dimension out_channels = dimension if channel_wise: groups = dimension else: in_channels = 1 out_channels = 1 self.convtr = StreamingConvTranspose1d( in_channels, out_channels, kernel_size=2 * stride, stride=stride, causal=causal, groups=groups, bias=False, ) if not learnt: actual_convtr = self.convtr.convtr.convtr actual_convtr.weight.requires_grad_(False) actual_convtr.weight.data.fill_(1.0) def forward(self, x: torch.Tensor): batch_size = len(x) if not self.learnt: x = rearrange(x, "b c t -> (b c) () t") y = self.convtr(x) if not self.learnt: x_for_normalization = torch.ones_like(x[:1]) normalization = self.convtr(x_for_normalization) y = y / normalization y = rearrange(y, "(b c) () t -> b c t", b=batch_size) return y