# Copyright (c) Kyutai, all rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Base class for all quantizers. """ from dataclasses import dataclass, field import typing as tp import torch from torch import nn @dataclass class QuantizedResult: x: torch.Tensor codes: torch.Tensor bandwidth: torch.Tensor # bandwidth in kb/s used, per batch item. penalty: tp.Optional[torch.Tensor] = None metrics: dict = field(default_factory=dict) class BaseQuantizer(nn.Module): """Base class for quantizers.""" def __init__(self): super().__init__() self._ema_frozen = False def forward(self, x: torch.Tensor, frame_rate: int) -> QuantizedResult: """ Given input tensor x, returns first the quantized (or approximately quantized) representation along with quantized codes, bandwidth, and any penalty term for the loss. Finally, this returns a dict of metrics to update logging etc. Frame rate must be passed so that the bandwidth is properly computed. """ raise NotImplementedError() def encode(self, x: torch.Tensor) -> torch.Tensor: """Encode a given input tensor with the specified sample rate at the given bandwidth.""" raise NotImplementedError() def decode(self, codes: torch.Tensor) -> torch.Tensor: """Decode the given codes to the quantized representation.""" raise NotImplementedError() @property def cardinality(self) -> int: """Cardinality of each codebook.""" raise NotImplementedError() @property def total_codebooks(self) -> int: """Total number of codebooks.""" raise NotImplementedError() @property def num_codebooks(self) -> int: """Number of active codebooks.""" raise NotImplementedError() @property def semantic_quantizer(self) -> 'BaseQuantizer': """This returns the quantizer that models the first level of the hierarchy (typically semantic). In this case, it's the quantizer itself. """ return self @property def acoustic_quantizer(self) -> 'BaseQuantizer': """This returns the quantizer that models the higher levels of the hierarchy (typically acoustic). In this case, it's the quantizer itself. """ return self def set_num_codebooks(self, n: int) -> None: """Set the number of active codebooks.""" raise NotImplementedError() @property def ema_frozen(self) -> bool: """Whether to apply ema to the codebooks.""" return self._ema_frozen def ema_frozen_(self, ema_frozen: bool) -> None: """Set whether ema should be applied to the codebooks.""" self._ema_frozen = ema_frozen class DummyQuantizer(BaseQuantizer): """Fake quantizer that actually does not perform any quantization.""" def __init__( self, dimension: int, input_dimension: tp.Optional[int] = None, output_dimension: tp.Optional[int] = None, ): super().__init__() self.dimension = dimension self.input_dimension = input_dimension or dimension self.output_dimension = output_dimension or dimension self.input_proj: torch.nn.Module self.output_proj: torch.nn.Module if self.input_dimension == self.dimension: self.input_proj = torch.nn.Identity() else: self.input_proj = torch.nn.Conv1d( self.input_dimension, self.dimension, 1, bias=False ) if self.input_dimension == self.dimension: self.output_proj = torch.nn.Identity() else: self.output_proj = torch.nn.Conv1d( self.dimension, self.output_dimension, 1, bias=False ) def forward(self, x: torch.Tensor, frame_rate: int): q = x.unsqueeze(1) x = self.output_proj(self.input_proj(x)) return QuantizedResult( x, q, torch.tensor(q.numel() * 32 * frame_rate / 1000 / len(x)).to(x) ) def encode(self, x: torch.Tensor) -> torch.Tensor: """Encode a given input tensor with the specified sample rate at the given bandwidth. In the case of the DummyQuantizer, the codes are actually identical to the input and resulting quantized representation as no quantization is done. """ x = self.input_proj(x) return x.unsqueeze(1) def decode(self, codes: torch.Tensor) -> torch.Tensor: """Decode the given codes to the quantized representation. In the case of the DummyQuantizer, the codes are actually identical to the input and resulting quantized representation as no quantization is done. """ y = codes.squeeze(1) return self.output_proj(y) @property def total_codebooks(self): """Total number of codebooks.""" return 1 @property def num_codebooks(self): """Total number of codebooks.""" return self.total_codebooks def set_num_codebooks(self, n: int): """Set the number of active codebooks.""" raise AttributeError( "Cannot override the number of codebooks for the dummy quantizer" ) @property def cardinality(self) -> int: """Cardinality of each codebook.""" return 1