# Copyright (c) Kyutai, all rights reserved. # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """ Streaming module API that should be implemented by all Streaming components, """ import abc from contextlib import contextmanager from dataclasses import dataclass import itertools import math import typing as tp from torch import nn import torch class Resetable(tp.Protocol): def reset(self) -> None: pass State = tp.TypeVar("State", bound=Resetable) class StreamingModule(abc.ABC, nn.Module, tp.Generic[State]): """Common API for streaming components. Each streaming component has a streaming state, which is just a dict[str, Tensor]. By convention, the first dim of each tensor must be the batch size. Don't use dots in the key names, as this would clash with submodules (like in state_dict). If `self._is_streaming` is True, the component should use and remember the proper state inside `self._streaming_state`. To set a streaming component in streaming state, use with module.streaming(): ... This will automatically reset the streaming state when exiting the context manager. This also automatically propagates to all streaming children module. Some module might also implement the `StreamingModule.flush` method, although this one is trickier, as all parents module must be StreamingModule and implement it as well for it to work properly. See `StreamingSequential` after. """ def __init__(self) -> None: super().__init__() self._streaming_state: State | None = None self._streaming_propagate: bool = True @property def is_streaming(self): return self._streaming_state is not None def set_streaming_propagate(self, streaming_propagate: bool): self._streaming_propagate = streaming_propagate def _apply_named_streaming(self, fn: tp.Any): def _handle_module(prefix: str, module: nn.Module, recurse: bool = True): propagate = True if isinstance(module, StreamingModule): if module._streaming_propagate: fn(prefix, module) else: propagate = False if not recurse: return if propagate: for name, child in module.named_children(): _handle_module(prefix + "." + name, child) _handle_module("", self, recurse=False) for name, child in self.named_children(): _handle_module(name, child) def _start_streaming(self, batch_size: int): def _start_streaming(name: str, module: StreamingModule): module._streaming_state = module._init_streaming_state(batch_size) self._apply_named_streaming(_start_streaming) def _stop_streaming(self): def _stop_streaming(name: str, module: StreamingModule): module._streaming_state = None self._apply_named_streaming(_stop_streaming) @abc.abstractmethod def _init_streaming_state(self, batch_size: int) -> State: ... def streaming_forever(self, batch_size: int): self._start_streaming(batch_size) @contextmanager def streaming(self, batch_size: int): """Context manager to enter streaming mode. Reset streaming state on exit.""" self._start_streaming(batch_size) try: yield finally: self._stop_streaming() def reset_streaming(self): """Reset the streaming state.""" def _reset(name: str, module: StreamingModule): state = module._streaming_state if state is None: raise ValueError( f"Trying to reset streaming, but {name} wasn't streaming." ) state.reset() self._apply_named_streaming(_reset) def get_streaming_state(self) -> dict[str, tp.Any]: """Return the complete streaming state, including that of sub-modules.""" state: dict[str, tp.Any] = {} def _add(name: str, module: StreamingModule): state[name] = module._streaming_state self._apply_named_streaming(_add) return state def set_streaming_state(self, state: dict[str, tp.Any]): """Set the streaming state, including that of sub-modules.""" state = dict(state) def _set(name: str, module: StreamingModule): if name in state: module._streaming_state = state[name] state.pop(name) else: raise RuntimeError(f"Expected to find a streaming state for {name}.") self._apply_named_streaming(_set) if state: raise RuntimeError(f"Some states were not consumed: {list(state.keys())}") @dataclass class _NullState: pass def reset(self) -> None: pass class StreamingContainer(StreamingModule[_NullState]): def _init_streaming_state(self, batch_size: int) -> _NullState: return _NullState() @dataclass class _StreamingAddState: previous_x: torch.Tensor | None = None previous_y: torch.Tensor | None = None def reset(self): self.previous_x = None self.previous_y = None class StreamingAdd(StreamingModule[_StreamingAddState]): def _init_streaming_state(self, batch_size: int) -> _StreamingAddState: return _StreamingAddState() def forward(self, x: torch.Tensor, y: torch.Tensor): if self._streaming_state is None: return x + y else: prev_x = self._streaming_state.previous_x prev_y = self._streaming_state.previous_y if prev_x is not None: x = torch.cat([prev_x, x], dim=-1) if prev_y is not None: y = torch.cat([prev_y, y], dim=-1) m_l = min(x.shape[-1], y.shape[-1]) self._streaming_state.previous_x = x[..., m_l:] self._streaming_state.previous_y = y[..., m_l:] return x[..., :m_l] + y[..., :m_l] @dataclass class _StreamingConvState: previous: torch.Tensor | None = None def reset(self): self.previous = None class RawStreamingConv1d(nn.Conv1d, StreamingModule[_StreamingConvState]): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) assert self.padding[0] == 0, "Padding should be handled outside." assert ( self.stride[0] <= self.kernel_size[0] ), "stride must be less than kernel_size." def _init_streaming_state(self, batch_size: int) -> _StreamingConvState: return _StreamingConvState() def forward(self, input: torch.Tensor) -> torch.Tensor: stride = self.stride[0] # Effective kernel size accounting for dilation. kernel = (self.kernel_size[0] - 1) * self.dilation[0] + 1 if self._streaming_state is None: return super().forward(input) else: # Due to the potential overlap, we might have some cache of the previous time steps. previous = self._streaming_state.previous if previous is not None: input = torch.cat([previous, input], dim=-1) B, C, T = input.shape # We now compute the number of full convolution frames, i.e. the frames # that are ready to be computed. num_frames = max(0, int(math.floor((T - kernel) / stride) + 1)) offset = num_frames * stride # We will compute `num_frames` outputs, and we are advancing by `stride` # for each of the frame, so we know the data before `stride * num_frames` # will never be used again. self._streaming_state.previous = input[..., offset:] if num_frames > 0: input_length = (num_frames - 1) * stride + kernel out = super().forward(input[..., :input_length]) else: # Not enough data as this point to output some new frames. out = torch.empty( B, self.out_channels, 0, device=input.device, dtype=input.dtype ) return out @dataclass class _StreamingConvTrState: partial: torch.Tensor | None = None def reset(self): self.partial = None class RawStreamingConvTranspose1d( nn.ConvTranspose1d, StreamingModule[_StreamingConvTrState] ): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) assert self.padding[0] == 0, "Padding should be handled outside." assert self.dilation[0] == 1, "No dilation for now" assert ( self.stride[0] <= self.kernel_size[0] ), "stride must be less than kernel_size." assert self.output_padding[0] == 0, "Output padding not supported." def _init_streaming_state(self, batch_size: int) -> _StreamingConvTrState: return _StreamingConvTrState() def forward(self, x: torch.Tensor) -> torch.Tensor: # type: ignore B, C, T = x.shape stride = self.stride[0] kernel = self.kernel_size[0] if self._streaming_state is None: return super().forward(x) else: if T == 0: return torch.empty( B, self.out_channels, 0, device=x.device, dtype=x.dtype ) out = super().forward(x) OT = out.shape[-1] partial = self._streaming_state.partial if partial is not None: # Due to the potential overlap, the rightmost output of the conv transpose is not # ready to be output, as it will receive contributions from the next input frames. # Here we recover those `partial` output frames. We know that the first time step # of the `partial` tensor corresponds to the first time step of `out` as anything # coming before the first time step of `out` would have been already flushed. PT = partial.shape[-1] if self.bias is not None: out[..., :PT] += partial - self.bias[:, None] else: out[..., :PT] += partial # The input is T, the output is S * (T - 1) + K. # The offset of the left of the next frame will be S * T # so everything between 0 and S * T is ready to be output, and we need # to keep in the internal state everything beyond that, i.e. S (T - 1) + K - S T = K - S invalid_steps = kernel - stride partial = out[..., OT - invalid_steps :] out = out[..., : OT - invalid_steps] self._streaming_state.partial = partial return out def test(): torch.manual_seed(1234) device = "cpu" kernel_sizes = [1, 3, 4, 8, 15, 16] strides = [1, 2, 3, 4, 5, 6, 7, 8, 9] chin = 6 chout = 12 for kernel, stride in itertools.product(kernel_sizes, strides): if stride > kernel: continue conv = RawStreamingConv1d(chin, chout, kernel, stride).to(device) convtr = RawStreamingConvTranspose1d(chout, chin, kernel, stride).to(device) for length in [4, 8, 32, 54, 65, 128, 1043]: print(f"ksize {kernel} strides {stride} len {length}") if length < kernel: continue batch_size = 3 x = torch.randn(batch_size, chin, length).to(device) y = conv(x) z = convtr(y) for chunk_size in [1, 3, 5, 8]: ys = [] zs = [] with conv.streaming(batch_size), convtr.streaming(batch_size): for offset in range(0, length, chunk_size): chunk = x[..., offset : offset + chunk_size] ys.append(conv(chunk)) zs.append(convtr(ys[-1])) y_stream = torch.cat(ys, dim=-1) z_stream = torch.cat(zs, dim=-1) y = y[..., : y_stream.shape[-1]] z = z[..., : z_stream.shape[-1]] assert y.shape == y_stream.shape, (y.shape, y_stream.shape) delta = (y_stream - y).norm() / y.norm() assert delta <= 1e-6, delta num_frames = int((length - kernel) / stride) + 1 assert num_frames == y_stream.shape[-1] assert z.shape == z_stream.shape, (z.shape, z_stream.shape) delta = (z_stream - z).norm() / z.norm() assert delta <= 1e-6, (delta, (z_stream - z).abs().mean(dim=(0, 1))) if __name__ == "__main__": with torch.no_grad(): test()